These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 34439916)
1. 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink. Restan Perez M; Sharma R; Masri NZ; Willerth SM Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439916 [TBL] [Abstract][Full Text] [Related]
2. 3D Bioprinting Pluripotent Stem Cell Derived Neural Tissues Using a Novel Fibrin Bioink Containing Drug Releasing Microspheres. Sharma R; Smits IPM; De La Vega L; Lee C; Willerth SM Front Bioeng Biotechnol; 2020; 8():57. PubMed ID: 32117936 [TBL] [Abstract][Full Text] [Related]
3. Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review. Bocheng X; França R Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39260389 [TBL] [Abstract][Full Text] [Related]
4. Protocol for printing 3D neural tissues using the BIO X equipped with a pneumatic printhead. Chrenek J; Kirsch R; Scheck K; Willerth SM STAR Protoc; 2022 Jun; 3(2):101348. PubMed ID: 35509974 [TBL] [Abstract][Full Text] [Related]
5. 3D bioprinted silk fibroin hydrogels for tissue engineering. Kim SH; Hong H; Ajiteru O; Sultan MT; Lee YJ; Lee JS; Lee OJ; Lee H; Park HS; Choi KY; Lee JS; Ju HW; Hong IS; Park CH Nat Protoc; 2021 Dec; 16(12):5484-5532. PubMed ID: 34716451 [TBL] [Abstract][Full Text] [Related]
6. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
7. Protocol for 3D Bioprinting Mesenchymal Stem Cell-derived Neural Tissues Using a Fibrin-based Bioink. Perez MR; Masri NZ; Walters-Shumka J; Kahale S; Willerth SM Bio Protoc; 2023 May; 13(9):e4663. PubMed ID: 37188103 [TBL] [Abstract][Full Text] [Related]
8. Tethered TGF-β1 in a Hyaluronic Acid-Based Bioink for Bioprinting Cartilaginous Tissues. Hauptstein J; Forster L; Nadernezhad A; Groll J; Teßmar J; Blunk T Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055112 [TBL] [Abstract][Full Text] [Related]
9. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting patient-derived induced pluripotent stem cell models of Alzheimer's disease using a smart bioink. Benwood C; Walters-Shumka J; Scheck K; Willerth SM Bioelectron Med; 2023 May; 9(1):10. PubMed ID: 37221543 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757 [TBL] [Abstract][Full Text] [Related]
13. Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Haring AP; Thompson EG; Tong Y; Laheri S; Cesewski E; Sontheimer H; Johnson BN Biofabrication; 2019 Feb; 11(2):025009. PubMed ID: 30695770 [TBL] [Abstract][Full Text] [Related]
14. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink. Pati F; Cho DW Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957 [TBL] [Abstract][Full Text] [Related]
15. Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds. Martorell L; López-Fernández A; García-Lizarribar A; Sabata R; Gálvez-Martín P; Samitier J; Vives J Biotechnol Bioeng; 2023 Sep; 120(9):2717-2724. PubMed ID: 36919270 [TBL] [Abstract][Full Text] [Related]
16. Efficient fabrication of 3D bioprinted functional sensory neurons using an inducible Neurogenin-2 human pluripotent stem cell line. St Clair-Glover M; Finol-Urdaneta RK; Maddock M; Wallace E; Miellet S; Wallace G; Yue Z; Dottori M Biofabrication; 2024 Aug; 16(4):. PubMed ID: 39084624 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process. Cheravi M; Baharara J; Yaghmaei P; Roudbari NH Curr Stem Cell Res Ther; 2024; 19(7):1042-1054. PubMed ID: 37957915 [TBL] [Abstract][Full Text] [Related]
18. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Sanz-Fraile H; Amoros S; Mendizabal I; Galvez-Monton C; Prat-Vidal C; Bayes-Genis A; Navajas D; Farre R; Otero J Tissue Eng Part A; 2020 Mar; 26(5-6):358-370. PubMed ID: 32085691 [TBL] [Abstract][Full Text] [Related]
19. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting. Engberg A; Stelzl C; Eriksson O; O'Callaghan P; Kreuger J Sci Rep; 2021 Nov; 11(1):21547. PubMed ID: 34732783 [TBL] [Abstract][Full Text] [Related]
20. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]