These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 34440296)

  • 21. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.
    Chotewutmontri P; Barkan A
    PLoS Genet; 2016 Jul; 12(7):e1006106. PubMed ID: 27414025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted m
    Rauch S; Dickinson BC
    Methods Enzymol; 2019; 621():1-16. PubMed ID: 31128773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical Modifications in the Life of an mRNA Transcript.
    Nachtergaele S; He C
    Annu Rev Genet; 2018 Nov; 52():349-372. PubMed ID: 30230927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA methylation in chloroplasts or mitochondria in plants.
    Manduzio S; Kang H
    RNA Biol; 2021 Dec; 18(12):2127-2135. PubMed ID: 33779501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seedling Lethal1, a pentatricopeptide repeat protein lacking an E/E+ or DYW domain in Arabidopsis, is involved in plastid gene expression and early chloroplast development.
    Pyo YJ; Kwon KC; Kim A; Cho MH
    Plant Physiol; 2013 Dec; 163(4):1844-58. PubMed ID: 24144791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers.
    Shi H; Wei J; He C
    Mol Cell; 2019 May; 74(4):640-650. PubMed ID: 31100245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development.
    Teubner M; Fuß J; Kühn K; Krause K; Schmitz-Linneweber C
    Plant J; 2017 Feb; 89(3):472-485. PubMed ID: 27743418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of gene expression in chloroplasts of higher plants.
    Sugita M; Sugiura M
    Plant Mol Biol; 1996 Oct; 32(1-2):315-26. PubMed ID: 8980485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translating the epitranscriptome.
    Hoernes TP; Erlacher MD
    Wiley Interdiscip Rev RNA; 2017 Jan; 8(1):. PubMed ID: 27345446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf.
    Loudya N; Mishra P; Takahagi K; Uehara-Yamaguchi Y; Inoue K; Bogre L; Mochida K; López-Juez E
    Genome Biol; 2021 May; 22(1):151. PubMed ID: 33975629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PRBP plays a role in plastid ribosomal RNA maturation and chloroplast biogenesis in Nicotiana benthamiana.
    Park YJ; Cho HK; Jung HJ; Ahn CS; Kang H; Pai HS
    Planta; 2011 Jun; 233(6):1073-85. PubMed ID: 21290146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two novel proteins, MRL7 and its paralog MRL7-L, have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis.
    Qiao J; Ma C; Wimmelbacher M; Börnke F; Luo M
    Plant Cell Physiol; 2011 Jun; 52(6):1017-30. PubMed ID: 21515910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron deficiency and the loss of chloroplast iron-sulfur cluster assembly trigger distinct transcriptome changes in Arabidopsis rosettes.
    Kroh GE; Pilon M
    Metallomics; 2020 Nov; 12(11):1748-1764. PubMed ID: 33047775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA modifications and cancer.
    Haruehanroengra P; Zheng YY; Zhou Y; Huang Y; Sheng J
    RNA Biol; 2020 Nov; 17(11):1560-1575. PubMed ID: 31994439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses.
    Lee K; Kang H
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Informatics Pipeline for Profiling and Annotating RNA Modifications.
    Liu Q; Lang X; Gregory RI
    Methods Mol Biol; 2021; 2298():15-27. PubMed ID: 34085236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression.
    Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():628415. PubMed ID: 33816473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mark of disease: how mRNA modifications shape genetic and acquired pathologies.
    Destefanis E; Avşar G; Groza P; Romitelli A; Torrini S; Pir P; Conticello SG; Aguilo F; Dassi E
    RNA; 2021 Apr; 27(4):367-389. PubMed ID: 33376192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.
    Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO
    BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.
    Lin CP; Ko CY; Kuo CI; Liu MS; Schafleitner R; Chen LF
    PLoS One; 2015; 10(6):e0129396. PubMed ID: 26076132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.