These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Comparative functional genomics of adaptation to muscular disuse in hibernating mammals. Fedorov VB; Goropashnaya AV; Stewart NC; Tøien Ø; Chang C; Wang H; Yan J; Showe LC; Showe MK; Barnes BM Mol Ecol; 2014 Nov; 23(22):5524-37. PubMed ID: 25314618 [TBL] [Abstract][Full Text] [Related]
5. Skeletal muscles of hibernating black bears show minimal atrophy and phenotype shifting despite prolonged physical inactivity and starvation. Miyazaki M; Shimozuru M; Tsubota T PLoS One; 2019; 14(4):e0215489. PubMed ID: 30998788 [TBL] [Abstract][Full Text] [Related]
6. Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia). Salmov NN; Vikhlyantsev IM; Ulanova AD; Gritsyna YV; Bobylev AG; Saveljev AP; Makariushchenko VV; Maksudov GY; Podlubnaya ZA Biochemistry (Mosc); 2015 Mar; 80(3):343-55. PubMed ID: 25761688 [TBL] [Abstract][Full Text] [Related]
7. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice. Zhang P; Li W; Liu H; Li J; Wang J; Li Y; Chen X; Yang Z; Fan M Cell Biochem Biophys; 2014 Nov; 70(2):1057-67. PubMed ID: 24839113 [TBL] [Abstract][Full Text] [Related]
8. Regulation of protein and oxidative energy metabolism are down-regulated in the skeletal muscles of Asiatic black bears during hibernation. Miyazaki M; Shimozuru M; Kitaoka Y; Takahashi K; Tsubota T Sci Rep; 2022 Nov; 12(1):19723. PubMed ID: 36385156 [TBL] [Abstract][Full Text] [Related]
9. Soleus muscle stability in wild hibernating black bears. Riley DA; Van Dyke JM; Vogel V; Curry BD; Bain JLW; Schuett R; Costill DL; Trappe T; Minchev K; Trappe S Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R369-R379. PubMed ID: 29641232 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome Analysis of Immune Receptor Activation and Energy Metabolism Reduction as the Underlying Mechanisms in Interleukin-6-Induced Skeletal Muscle Atrophy. Sun H; Sun J; Li M; Qian L; Zhang L; Huang Z; Shen Y; Law BY; Liu L; Gu X Front Immunol; 2021; 12():730070. PubMed ID: 34552592 [TBL] [Abstract][Full Text] [Related]
11. TGF-beta1 and TNF-alpha are involved in the transcription of type I collagen alpha2 gene in soleus muscle atrophied by mechanical unloading. Hirose T; Nakazato K; Song H; Ishii N J Appl Physiol (1985); 2008 Jan; 104(1):170-7. PubMed ID: 17916675 [TBL] [Abstract][Full Text] [Related]
13. Meta-analysis of expression signatures of muscle atrophy: gene interaction networks in early and late stages. Calura E; Cagnin S; Raffaello A; Laveder P; Lanfranchi G; Romualdi C BMC Genomics; 2008 Dec; 9():630. PubMed ID: 19108710 [TBL] [Abstract][Full Text] [Related]
14. Vasohibin-1 expression is regulated by transforming growth factor-β/bone morphogenic protein signaling pathway between tumor-associated macrophages and pancreatic cancer cells. Shen Z; Seppänen H; Kauttu T; Vainionpää S; Ye Y; Wang S; Mustonen H; Puolakkainen P J Interferon Cytokine Res; 2013 Aug; 33(8):428-33. PubMed ID: 23651239 [TBL] [Abstract][Full Text] [Related]
15. Supplementing cultured human myotubes with hibernating bear serum results in increased protein content by modulating Akt/FOXO3a signaling. Miyazaki M; Shimozuru M; Tsubota T PLoS One; 2022; 17(1):e0263085. PubMed ID: 35077510 [TBL] [Abstract][Full Text] [Related]
16. Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Long L; Crosby A; Yang X; Southwood M; Upton PD; Kim DK; Morrell NW Circulation; 2009 Feb; 119(4):566-76. PubMed ID: 19153267 [TBL] [Abstract][Full Text] [Related]
17. Effect of branched-chain amino acid supplementation during unloading on regulatory components of protein synthesis in atrophied soleus muscles. Bajotto G; Sato Y; Kitaura Y; Shimomura Y Eur J Appl Physiol; 2011 Aug; 111(8):1815-28. PubMed ID: 21222129 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional changes in muscle of hibernating arctic ground squirrels (Urocitellus parryii): implications for attenuation of disuse muscle atrophy. Goropashnaya AV; Barnes BM; Fedorov VB Sci Rep; 2020 Jun; 10(1):9010. PubMed ID: 32488149 [TBL] [Abstract][Full Text] [Related]
19. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Winbanks CE; Chen JL; Qian H; Liu Y; Bernardo BC; Beyer C; Watt KI; Thomson RE; Connor T; Turner BJ; McMullen JR; Larsson L; McGee SL; Harrison CA; Gregorevic P J Cell Biol; 2013 Oct; 203(2):345-57. PubMed ID: 24145169 [TBL] [Abstract][Full Text] [Related]
20. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy. Lechado I Terradas A; Vitadello M; Traini L; Namuduri AV; Gastaldello S; Gorza L J Pathol; 2018 Dec; 246(4):433-446. PubMed ID: 30066461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]