These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 34440655)

  • 1. Plasticity of the Injured Spinal Cord.
    Guérout N
    Cells; 2021 Jul; 10(8):. PubMed ID: 34440655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury.
    Fan C; Li X; Zhao Y; Xiao Z; Xue W; Sun J; Li X; Zhuang Y; Chen Y; Dai J
    Biomater Sci; 2018 Jun; 6(7):1723-1734. PubMed ID: 29845137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microenvironment Imbalance of Spinal Cord Injury.
    Fan B; Wei Z; Yao X; Shi G; Cheng X; Zhou X; Zhou H; Ning G; Kong X; Feng S
    Cell Transplant; 2018 Jun; 27(6):853-866. PubMed ID: 29871522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles.
    Guo S; Redenski I; Levenberg S
    Cells; 2021 Jul; 10(8):. PubMed ID: 34440641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermosensitive heparin-poloxamer hydrogels enhance the effects of GDNF on neuronal circuit remodeling and neuroprotection after spinal cord injury.
    Zhao YZ; Jiang X; Lin Q; Xu HL; Huang YD; Lu CT; Cai J
    J Biomed Mater Res A; 2017 Oct; 105(10):2816-2829. PubMed ID: 28593744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord.
    Hoeber J; König N; Trolle C; Lekholm E; Zhou C; Pankratova S; Åkesson E; Fredriksson R; Aldskogius H; Kozlova EN
    Stem Cells Dev; 2017 Jul; 26(14):1065-1077. PubMed ID: 28562227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.
    Assinck P; Duncan GJ; Plemel JR; Lee MJ; Stratton JA; Manesh SB; Liu J; Ramer LM; Kang SH; Bergles DE; Biernaskie J; Tetzlaff W
    J Neurosci; 2017 Sep; 37(36):8635-8654. PubMed ID: 28760862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury.
    Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H
    J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury.
    Li X; Tan J; Xiao Z; Zhao Y; Han S; Liu D; Yin W; Li J; Li J; Wanggou S; Chen B; Ren C; Jiang X; Dai J
    Sci Rep; 2017 Mar; 7():43559. PubMed ID: 28262732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury.
    Nishimura S; Yasuda A; Iwai H; Takano M; Kobayashi Y; Nori S; Tsuji O; Fujiyoshi K; Ebise H; Toyama Y; Okano H; Nakamura M
    Mol Brain; 2013 Jan; 6():3. PubMed ID: 23298657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function.
    Boido M; Garbossa D; Vercelli A
    J Neurosurg Spine; 2011 Jul; 15(1):97-106. PubMed ID: 21456892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord.
    Cusimano M; Biziato D; Brambilla E; Donegà M; Alfaro-Cervello C; Snider S; Salani G; Pucci F; Comi G; Garcia-Verdugo JM; De Palma M; Martino G; Pluchino S
    Brain; 2012 Feb; 135(Pt 2):447-60. PubMed ID: 22271661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair.
    Curt A; Van Hedel HJ; Klaus D; Dietz V;
    J Neurotrauma; 2008 Jun; 25(6):677-85. PubMed ID: 18578636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Setting the stage for functional repair of spinal cord injuries: a cast of thousands.
    Ramer LM; Ramer MS; Steeves JD
    Spinal Cord; 2005 Mar; 43(3):134-61. PubMed ID: 15672094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial glial progenitors repair the zebrafish spinal cord following transection.
    Briona LK; Dorsky RI
    Exp Neurol; 2014 Jun; 256():81-92. PubMed ID: 24721238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs.
    Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W
    Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury.
    Sun X; Bai Y; Zhai H; Liu S; Zhang C; Xu Y; Zou J; Wang T; Chen S; Zhu Q; Liu X; Mao H; Quan D
    Acta Biomater; 2019 Mar; 86():194-206. PubMed ID: 30586646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury.
    Bilchak JN; Caron G; Côté MP
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34064332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.