BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 34440731)

  • 1. Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms.
    Loscocco GG; Coltro G; Guglielmelli P; Vannucchi AM
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN.
    Pasca S; Chifotides HT; Verstovsek S; Bose P
    Int Rev Cell Mol Biol; 2022; 366():83-124. PubMed ID: 35153007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Concepts of Pathogenesis and Treatment of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Zeeh FC; Meyer SC
    Hamostaseologie; 2021 Jun; 41(3):197-205. PubMed ID: 34192778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic basis and molecular profiling in myeloproliferative neoplasms.
    Luque Paz D; Kralovics R; Skoda RC
    Blood; 2023 Apr; 141(16):1909-1921. PubMed ID: 36347013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Clinical application of gene mutation information in myeloproliferative neoplasms].
    Takenaka K
    Rinsho Ketsueki; 2019; 60(6):610-618. PubMed ID: 31281152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Mutational Profile on the Management of Myeloproliferative Neoplasms: A Short Review of the Emerging Data.
    Loscocco GG; Guglielmelli P; Vannucchi AM
    Onco Targets Ther; 2020; 13():12367-12382. PubMed ID: 33293830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms.
    O'Sullivan JM; Harrison CN
    Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable.
    Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS
    Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Not Available].
    Mosca M; Vertenoeil G; Toppaldoddi KR; Plo I; Vainchenker W
    Bull Cancer; 2016 Jun; 103(6 Suppl 1):S16-28. PubMed ID: 27494969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent insights regarding the molecular basis of myeloproliferative neoplasms.
    Jang MA; Choi CW
    Korean J Intern Med; 2020 Jan; 35(1):1-11. PubMed ID: 31778606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms.
    Vainchenker W; Kralovics R
    Blood; 2017 Feb; 129(6):667-679. PubMed ID: 28028029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis.
    Merlinsky TR; Levine RL; Pronier E
    Clin Cancer Res; 2019 May; 25(10):2956-2962. PubMed ID: 30655313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.
    Pasquier F; Cabagnols X; Secardin L; Plo I; Vainchenker W
    Clin Lymphoma Myeloma Leuk; 2014 Sep; 14 Suppl():S23-35. PubMed ID: 25486952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOLECULAR GENETIC ABNORMALITIES IN THE GENOME OF PATIENTS WITH Ph-NEGATIVE MYELOPROLIFERATIVE NEOPLASIA AFFECTED BY IONIZING RADIATION AS A RESULT OF THE CHORNOBYL NUCLEAR ACCIDENT.
    Poluben LO; Neumerzhytska LV; Klymenko SV; Fraenkel P; Balk C; Shumeiko OO
    Probl Radiac Med Radiobiol; 2020 Dec; 25():362-373. PubMed ID: 33361847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms.
    Frawley T; O'Brien CP; Conneally E; Vandenberghe E; Percy M; Langabeer SE; Haslam K
    Genet Test Mol Biomarkers; 2018 Feb; 22(2):98-103. PubMed ID: 29323541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CALR, JAK2 and MPL mutation status in Argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms.
    Ojeda MJ; Bragós IM; Calvo KL; Williams GM; Carbonell MM; Pratti AF
    Hematology; 2018 May; 23(4):208-211. PubMed ID: 28990497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1.
    Tefferi A
    Leukemia; 2010 Jun; 24(6):1128-38. PubMed ID: 20428194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond.
    Michiels JJ; Berneman Z; Schroyens W; De Raeve H
    Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current approaches to challenging scenarios in myeloproliferative neoplasms.
    Zimran E; Hoffman R; Kremyanskaya M
    Expert Rev Anticancer Ther; 2018 Jun; 18(6):567-578. PubMed ID: 29575945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Pathogenesis of Myeloproliferative Neoplasms: From Molecular Landscape to Therapeutic Implications.
    Morsia E; Torre E; Poloni A; Olivieri A; Rupoli S
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.