These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 34440785)

  • 1. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss.
    Kiran S; Dwivedi P; Kumar V; Price RL; Singh UP
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair.
    Mintz EL; Passipieri JA; Franklin IR; Toscano VM; Afferton EC; Sharma PR; Christ GJ
    Tissue Eng Part A; 2020 Feb; 26(3-4):140-156. PubMed ID: 31578935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies.
    Passipieri JA; Christ GJ
    Cells Tissues Organs; 2016; 202(3-4):202-213. PubMed ID: 27825153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascularized and Innervated Skeletal Muscle Tissue Engineering.
    Gilbert-Honick J; Grayson W
    Adv Healthc Mater; 2020 Jan; 9(1):e1900626. PubMed ID: 31622051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury.
    Nuge T; Liu Z; Liu X; Ang BC; Andriyana A; Metselaar HSC; Hoque ME
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33572728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the potential use of functional fibrosis to facilitate improved outcomes following volumetric muscle loss injury.
    Dolan CP; Motherwell JM; Franco SR; Janakiram NB; Valerio MS; Goldman SM; Dearth CL
    Acta Biomater; 2022 Mar; 140():379-388. PubMed ID: 34843950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury.
    Corona BT; Ward CL; Baker HB; Walters TJ; Christ GJ
    Tissue Eng Part A; 2014 Feb; 20(3-4):705-15. PubMed ID: 24066899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreactive Hydrogel Stiffness Influences Volumetric Muscle Loss Repair.
    Basurto IM; Passipieri JA; Gardner GM; Smith KK; Amacher AR; Hansrisuk AI; Christ GJ; Caliari SR
    Tissue Eng Part A; 2022 Apr; 28(7-8):312-329. PubMed ID: 34409861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
    Grasman JM; Zayas MJ; Page RL; Pins GD
    Acta Biomater; 2015 Oct; 25():2-15. PubMed ID: 26219862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury.
    Kesireddy V
    Int J Nanomedicine; 2016; 11():1461-73. PubMed ID: 27114706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury.
    Westman AM; Peirce SM; Christ GJ; Blemker SS
    PLoS Comput Biol; 2021 May; 17(5):e1008937. PubMed ID: 33970905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative Repair of Volumetric Muscle Loss Injury is Sensitive to Age.
    Kim JT; Kasukonis B; Dunlap G; Perry R; Washington T; Wolchok JC
    Tissue Eng Part A; 2020 Jan; 26(1-2):3-14. PubMed ID: 31064280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss.
    Eugenis I; Wu D; Rando TA
    Biomaterials; 2021 Nov; 278():121173. PubMed ID: 34619561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of high-intensity interval training and stem cell transplantation with amniotic membrane scaffold on repair and rehabilitation after volumetric muscle loss injury.
    Izadi MR; Habibi A; Khodabandeh Z; Nikbakht M
    Cell Tissue Res; 2021 Feb; 383(2):765-779. PubMed ID: 33128624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regenerative and Rehabilitative Medicine: A Necessary Synergy for Functional Recovery from Volumetric Muscle Loss Injury.
    Greising SM; Dearth CL; Corona BT
    Cells Tissues Organs; 2016; 202(3-4):237-249. PubMed ID: 27825146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue.
    Mertens JP; Sugg KB; Lee JD; Larkin LM
    Regen Med; 2014 Jan; 9(1):89-100. PubMed ID: 24351009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis.
    Greising SM; Corona BT; McGann C; Frankum JK; Warren GL
    Tissue Eng Part B Rev; 2019 Dec; 25(6):510-525. PubMed ID: 31578930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tissue engineering approach for repairing craniofacial volumetric muscle loss in a sheep following a 2, 4, and 6-month recovery.
    Rodriguez BL; Vega-Soto EE; Kennedy CS; Nguyen MH; Cederna PS; Larkin LM
    PLoS One; 2020; 15(9):e0239152. PubMed ID: 32956427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acellular collagen-glycosaminoglycan matrix promotes functional recovery in a rat model of volumetric muscle loss.
    Zhu C; Karvar M; Koh DJ; Sklyar K; Endo Y; Quint J; Samandari M; Tamayol A; Sinha I
    Regen Med; 2023 Aug; 18(8):623-633. PubMed ID: 37491948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricted physical activity after volumetric muscle loss alters whole-body and local muscle metabolism.
    Raymond-Pope CJ; Basten AM; Bruzina AS; McFaline-Figueroa J; Lillquist TJ; Call JA; Greising SM
    J Physiol; 2023 Feb; 601(4):743-761. PubMed ID: 36536512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.