These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34441544)
1. Influence of Sample Matrix on Determination of Histamine in Fish by Surface Enhanced Raman Spectroscopy Coupled with Chemometric Modelling. Filipec SV; Valinger D; Mikac L; Ivanda M; Kljusurić JG; Janči T Foods; 2021 Jul; 10(8):. PubMed ID: 34441544 [TBL] [Abstract][Full Text] [Related]
2. Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates. Janči T; Valinger D; Gajdoš Kljusurić J; Mikac L; Vidaček S; Ivanda M Food Chem; 2017 Jun; 224():48-54. PubMed ID: 28159292 [TBL] [Abstract][Full Text] [Related]
3. Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy. Gao F; Grant E; Lu X Anal Chim Acta; 2015 Dec; 901():68-75. PubMed ID: 26614059 [TBL] [Abstract][Full Text] [Related]
4. Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis. Tan A; Zhao Y; Sivashanmugan K; Squire K; Wang AX Food Control; 2019 Sep; 103():111-118. PubMed ID: 31827314 [TBL] [Abstract][Full Text] [Related]
5. Novel method for the discrimination of tuna (Thunnus thynnus) and bonito (Sarda sarda) DNA. Lockley AK; Bardsley RG J Agric Food Chem; 2000 Oct; 48(10):4463-8. PubMed ID: 11052685 [TBL] [Abstract][Full Text] [Related]
6. Histamine Control in Raw and Processed Tuna: A Rapid Tool Based on NIR Spectroscopy. Ghidini S; Chiesa LM; Panseri S; Varrà MO; Ianieri A; Pessina D; Zanardi E Foods; 2021 Apr; 10(4):. PubMed ID: 33919551 [TBL] [Abstract][Full Text] [Related]
7. Determination of the superficial citral content on microparticles: An application of NIR spectroscopy coupled with chemometric tools. Yoplac I; Avila-George H; Vargas L; Robert P; Castro W Heliyon; 2019 Jul; 5(7):e02122. PubMed ID: 31388576 [TBL] [Abstract][Full Text] [Related]
8. PCR detection and identification of histamine-forming bacteria in filleted tuna fish samples. Ferrario C; Pegollo C; Ricci G; Borgo F; Fortina MG J Food Sci; 2012 Feb; 77(2):M115-20. PubMed ID: 22251187 [TBL] [Abstract][Full Text] [Related]
9. Modification and Single-Laboratory Validation of AOAC Official Method 977.13 for Histamine in Seafood to Improve Sample Throughput. Bjornsdottir-Butler K; Bencsath FA; Benner RA J AOAC Int; 2015; 98(3):622-627. PubMed ID: 26086251 [TBL] [Abstract][Full Text] [Related]
10. Qualitative determination of histamine in canned yellowfin tuna ( Crobu L; Mudadu AG; Melillo R; Pais GL; Meloni D Ital J Food Saf; 2021 Jun; 10(2):9379. PubMed ID: 34322399 [TBL] [Abstract][Full Text] [Related]
11. Use of Standing Gold Nanorods for Detection of Malachite Green and Crystal Violet in Fish by SERS. Chen X; Nguyen THD; Gu L; Lin M J Food Sci; 2017 Jul; 82(7):1640-1646. PubMed ID: 28585714 [TBL] [Abstract][Full Text] [Related]
12. Development of a real-time PCR method coupled with a selective pre-enrichment step for quantification of Morganella morganii and Morganella psychrotolerans in fish products. Podeur G; Dalgaard P; Leroi F; Prévost H; Emborg J; Martinussen J; Hansen LH; Pilet MF Int J Food Microbiol; 2015 Jun; 203():55-62. PubMed ID: 25791250 [TBL] [Abstract][Full Text] [Related]
13. Quality assurance of histamine analysis in fresh and canned fish. Evangelista WP; Silva TM; Guidi LR; Tette PA; Byrro RM; Santiago-Silva P; Fernandes C; Gloria MB Food Chem; 2016 Nov; 211():100-6. PubMed ID: 27283612 [TBL] [Abstract][Full Text] [Related]
14. Identification of Selected Tuna Species in Commercial Products. Servusova E; Piskata Z Molecules; 2021 Feb; 26(4):. PubMed ID: 33672711 [TBL] [Abstract][Full Text] [Related]
15. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish. Xie Z; Wang Y; Chen Y; Xu X; Jin Z; Ding Y; Yang N; Wu F Food Chem; 2017 Sep; 230():547-552. PubMed ID: 28407947 [TBL] [Abstract][Full Text] [Related]
16. Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives. Yadav S; Nair SS; Sai VVR; Satija J Food Res Int; 2019 May; 119():99-109. PubMed ID: 30884738 [TBL] [Abstract][Full Text] [Related]
17. Significant histamine formation in tuna (Thunnus albacares) at 2 degrees C--effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria. Emborg J; Laursen BG; Dalgaard P Int J Food Microbiol; 2005 Jun; 101(3):263-79. PubMed ID: 15925710 [TBL] [Abstract][Full Text] [Related]
18. Histamine (Scombroid) Fish Poisoning: a Comprehensive Review. Feng C; Teuber S; Gershwin ME Clin Rev Allergy Immunol; 2016 Feb; 50(1):64-9. PubMed ID: 25876709 [TBL] [Abstract][Full Text] [Related]
19. Histamine Content in Selected Production Stages of Fish Products. Madejska A; Pawul-Gruba M; Osek J J Vet Res; 2022 Dec; 66(4):599-604. PubMed ID: 36846046 [TBL] [Abstract][Full Text] [Related]
20. Determining quality of caviar from Caspian Sea based on Raman spectroscopy and using artificial neural networks. Mohamadi Monavar H; Afseth NK; Lozano J; Alimardani R; Omid M; Wold JP Talanta; 2013 Jul; 111():98-104. PubMed ID: 23622531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]