These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34442139)

  • 1. Preliminary Assessment of Muscle Activity and Muscle Characteristics during Training with Powered Robotic Exoskeleton: A Repeated-Measures Study.
    Kim SH; Shin HJ; Cho HY
    Healthcare (Basel); 2021 Aug; 9(8):. PubMed ID: 34442139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.
    Gagnon DH; Vermette M; Duclos C; Aubertin-Leheudre M; Ahmed S; Kairy D
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):138-145. PubMed ID: 29256640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of an Overground Walking Program With a Robotic Exoskeleton on Long-Term Manual Wheelchair Users With a Chronic Spinal Cord Injury: Protocol for a Self-Controlled Interventional Study.
    Bass A; Aubertin-Leheudre M; Vincent C; Karelis AD; Morin SN; McKerral M; Duclos C; Gagnon DH
    JMIR Res Protoc; 2020 Sep; 9(9):e19251. PubMed ID: 32663160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016.
    Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings.
    Swank C; Trammell M; Bennett M; Ochoa C; Callender L; Sikka S; Driver S
    Int J Rehabil Res; 2020 Sep; 43(3):206-213. PubMed ID: 32282573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results.
    Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiorespiratory demand and rate of perceived exertion during overground walking with a robotic exoskeleton in long-term manual wheelchair users with chronic spinal cord injury: A cross-sectional study.
    Escalona MJ; Brosseau R; Vermette M; Comtois AS; Duclos C; Aubertin-Leheudre M; Gagnon DH
    Ann Phys Rehabil Med; 2018 Jul; 61(4):215-223. PubMed ID: 29371106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity.
    Khan AS; Livingstone DC; Hurd CL; Duchcherer J; Misiaszek JE; Gorassini MA; Manns PJ; Yang JF
    J Neuroeng Rehabil; 2019 Nov; 16(1):145. PubMed ID: 31752911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S; Koyama S; Saitoh E; Hirano S; Yatsuya K; Tsunoda T; Katoh M; Gotoh T; Furumoto A
    NeuroRehabilitation; 2017; 41(1):85-95. PubMed ID: 28527225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower extremity robotic exoskeleton training: Case studies for complete spinal cord injury walking.
    Lemaire ED; Smith AJ; Herbert-Copley A; Sreenivasan V
    NeuroRehabilitation; 2017; 41(1):97-103. PubMed ID: 28505991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Assistance Timing in Knee Extensor Muscle Activation During Sit-to-Stand Using a Bilateral Robotic Knee Exoskeleton.
    Choi G; Lee D; Kang I; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4879-4882. PubMed ID: 34892302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury.
    Wu CH; Mao HF; Hu JS; Wang TY; Tsai YJ; Hsu WL
    J Neuroeng Rehabil; 2018 Mar; 15(1):14. PubMed ID: 29506530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.