BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34442514)

  • 1. A MEMS Fabrication Process with Thermal-Oxide Releasing Barriers and Polysilicon Sacrificial Layers for AlN Lamb-Wave Resonators to Achieve
    Zhao J; Zhu Z; Sun H; Lv S; Wang X; Song C
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators.
    Chen W; Zhang L; Yang S; Jia W; Zhang S; Gu Y; Lou L; Wu G
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on Quasi-Lamb Wave Modes in AlN-on-Si MEMS Resonators.
    Tu C; Qiao L; Li L; Chen Y; Zhang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1252-1260. PubMed ID: 37028377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized Multi-Cantilever MEMS Resonators with Low Motional Impedance.
    Li H; Yang Q; Yuan Y; Shi S; Niu P; Li Q; Chen X; Zhang M; Pang W
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study on the Effects of Bottom Electrode Designs on Aluminum Nitride Contour-Mode Resonators.
    Jung SI; Ryu C; Piazza G; Kim HJ
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31703310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Quality-Factor and Spectrum-Clean AlN Lamb-Wave Resonators with Optimized Lateral Reflection Boundary Conditions and Transducer Design.
    Sun H; Lv S; Zhang A; Song C; Sun X; Tan F; Liang L; Zhu Y; Zhao J
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromachined thin film plate acoustic resonators utilizing the lowest order symmetric lamb wave mode.
    Yantchev V; Katardjiev I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jan; 54(1):87-95. PubMed ID: 17225803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Piezoelectric AlN Thin Film with SU-8/PDMS Supporting Layer for Flexible Sensor Array.
    Yeo HG; Jung J; Sim M; Jang JE; Choi H
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-compensated aluminum nitride lamb wave resonators.
    Lin CM; Yen TT; Lai YJ; Felmetsger VV; Hopcroft MA; Kuypers JH; Pisano AP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):524-32. PubMed ID: 20211766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Al
    Luo Z; Shao S; Wu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3108-3116. PubMed ID: 34914586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators.
    Chung CJ; Chen YC; Cheng CC; Kao KS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):857-64. PubMed ID: 18467230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature Characteristics of a Contour Mode MEMS AlN Piezoelectric Ring Resonator on SOI Substrate.
    Fei S; Ren H
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33572931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AlN/3C-SiC composite plate enabling high-frequency and high-Q micromechanical resonators.
    Lin CM; Chen YY; Felmetsger VV; Senesky DG; Pisano AP
    Adv Mater; 2012 May; 24(20):2722-7. PubMed ID: 22495881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, Characterization, and Application of AlN/ScAlN Composite Thin Films.
    Nian L; Qu Y; Gu X; Luo T; Xie Y; Wei M; Cai Y; Liu Y; Sun C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the Performance Enhancement of Sc-Doped AlN Super High Frequency Cross-Sectional Lamé Mode Resonators.
    Assylbekova M; Pirro M; Zhao X; Michetti G; Simeoni P; Rinaldi M
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency Lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap.
    Kadota M; Ogami T; Yamamoto K; Tochishita H; Negoro Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2564-71. PubMed ID: 21041143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-high-frequency two-port AlN contour-mode resonators for RF applications.
    Rinaldi M; Zuniga C; Zuo C; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):38-45. PubMed ID: 20040424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the effectiveness of lateral excitation of shear modes in AlN layered resonators.
    Clement M; Iborra E; Olivares J; DeMiguel-Ramos M; Mirea T; Sangrador J
    Ultrasonics; 2014 Aug; 54(6):1504-8. PubMed ID: 24830359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GaN Micromechanical Resonators with Meshed Metal Bottom Electrode.
    Ansari A; Liu CY; Lin CC; Kuo HC; Ku PC; Rais-Zadeh M
    Materials (Basel); 2015 Mar; 8(3):1204-1212. PubMed ID: 28787997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-compact and high-performance suspended aluminum scandium nitride Lamb wave humidity sensor with a graphene oxide layer.
    Luo Z; Li D; Le X; He T; Shao S; Lv Q; Liu Z; Lee C; Wu T
    Nanoscale; 2024 May; 16(21):10230-10238. PubMed ID: 38629471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.