These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34442519)

  • 1. Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging.
    Wang Y; Wang J; Wang T; Wang C
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization.
    Wang Y; Wang J; Zhou C; Ding G; Chen M; Zou J; Wang G; Kang Y; Pan X
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31766178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water.
    Maw MM; Wang J; Li F; Jiang J; Song Y; Pan X
    Int J Mol Sci; 2015 Oct; 16(10):25560-75. PubMed ID: 26516836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing.
    Wang J; Zhao J; Wang Y; Wang W; Gao Y; Xu R; Zhao W
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Determination of four trihalomethanes in ship ballast water by gas chromatography-negative chemical ionization-mass spectrometry].
    Hu G; Wang H; Yu K; Shen W; Hou Y; Ji M; Zhu Y; Tian W; Li X
    Se Pu; 2022 Jun; 40(6):584-589. PubMed ID: 35616204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence.
    Wang J; Sun J; Song Y; Xu Y; Pan X; Sun Y; Li D
    Sensors (Basel); 2013 Nov; 13(12):16075-89. PubMed ID: 24287532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
    Wang Y; Wang J; Wu X; Jiang Z; Wang W
    Electrophoresis; 2019 Mar; 40(6):969-978. PubMed ID: 30221789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Changeable Lab-on-a-Chip Detector for Marine Nonindigenous Microorganisms in Ship's Ballast Water.
    Maw MM; Pan X; Peng Z; Wang Y; Zhao L; Dai B; Wang J
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of microalgae in ballast water with pulse intense light treatment.
    Feng D; Shi J; Sun D
    Mar Pollut Bull; 2015 Jan; 90(1-2):299-303. PubMed ID: 25440896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sodium hypochlorite treatment on the chlorophyll fluorescence in photosystem II of microalgae.
    Li N; Liu Z; Wang P; Suman K; Zhang J; Song Y
    Sci Total Environ; 2022 Aug; 833():155192. PubMed ID: 35421461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation experiments to elucidate variable fluorescence as a potential proxy for bulk microalgal viability from natural water, sediments and biofilms: Implication in ships ballast water management.
    Patil JS; Anil AC
    J Environ Manage; 2018 Sep; 222():242-249. PubMed ID: 29859464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of residual toxicity of hypochlorite-treated water using bioluminescent microbes and microalgae: Implications for ballast water management.
    Lee JS; Hong S; Lee J; Choi TS; Rhie K; Khim JS
    Ecotoxicol Environ Saf; 2019 Jan; 167():130-137. PubMed ID: 30317117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency inactivation of microalgae in ballast water by a new proposed dual-wave UV-photocatalysis system (UVA/UVC-TiO
    Lu Z; Zhang K; Liu X; Shi Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7785-7792. PubMed ID: 30673945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of interdisciplinary devices for detecting the quality of ship ballast water.
    Bakalar G
    Springerplus; 2014; 3():468. PubMed ID: 25202651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of microalgae objects based on the Improved YOLOv3 model.
    Cao M; Wang J; Chen Y; Wang Y
    Environ Sci Process Impacts; 2021 Oct; 23(10):1516-1530. PubMed ID: 34490434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semicontinuous and batch ozonation combined with peroxymonosulfate for inactivation of microalgae in ballast water.
    Rivas-Zaballos I; Romero-Martínez L; Ibáñez-López ME; García-Morales JL; Acevedo-Merino A; Nebot E
    Sci Total Environ; 2022 Nov; 847():157559. PubMed ID: 35878852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the microalgae inactivating efficacy of ultraviolet ballast water treatment in combination with hydrogen peroxide or peroxymonosulfate salt.
    Romero-Martínez L; Rivas-Zaballos I; Moreno-Andrés J; Moreno-Garrido I; Acevedo-Merino A; Nebot E
    Mar Pollut Bull; 2021 Jan; 162():111886. PubMed ID: 33310544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a hydroxyl-radical-based disinfection system for ballast water.
    Bai M; Tian Y; Yu Y; Zheng Q; Zhang X; Zheng W; Zhang Z
    Chemosphere; 2018 Oct; 208():541-549. PubMed ID: 29890492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous membranes for ballast water treatment from microalgae-rich seawater.
    Guilbaud J; Massé A; Wolff FC; Jaouen P
    Mar Pollut Bull; 2015 Dec; 101(2):612-7. PubMed ID: 26517940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary.
    Zatoń-Sieczka K; Bogusławska-Wąs E; Czerniejewski P; Brysiewicz A; Tański A
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.