BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34442556)

  • 1. Measurement of the Thermal Effect of Standing Surface Acoustic Waves in Microchannel by Fluoresence Intensity.
    Li Y; Wei S; Zheng T
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble-Enhanced Mixing Induced by Standing Surface Acoustic Waves (SSAWs) in Microchannel.
    Zhang J; Zheng T; Tang L; Qi H; Wu X; Zhu L
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simulated Investigation of Lithium Niobate Orientation Effects on Standing Acoustic Waves.
    Janardhana RD; Jackson N
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation.
    Soliman AM; Eldosoky MA; Taha TE
    Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance.
    Mezzanzanica G; Français O; Mariani S
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tritoroidal particle rings formation in open microfluidics induced by standing surface acoustic waves.
    Zheng T; Wang C; Xu C
    Electrophoresis; 2020 Jun; 41(10-11):983-990. PubMed ID: 32056225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform.
    Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y
    Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
    Hsu JC; Hsu CH; Huang YW
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves.
    Cui M; Kim M; Weisensee PB; Meacham JM
    Lab Chip; 2021 Jun; 21(13):2534-2543. PubMed ID: 33998632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acousto-optofluidic 3D single cell imaging of macrophage phagocytosis of
    Richard C; Vargas-Ordaz EJ; Zhang Y; Li J; Cadarso VJ; Neild A
    Lab Chip; 2024 Jan; 24(3):480-491. PubMed ID: 38132834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance control of acoustic focusing systems through an environmental reference table and impedance spectroscopy.
    Kalb DM; Olson RJ; Sosik HM; Woods TA; Graves SW
    PLoS One; 2018; 13(11):e0207532. PubMed ID: 30427942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation.
    Johansson L; Evander M; Lilliehorn T; Almqvist M; Nilsson J; Laurell T; Johansson S
    Ultrasonics; 2013 Jul; 53(5):1020-32. PubMed ID: 23497805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation.
    Gedge M; Hill M
    Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a surface-acoustic-wave device for measurement of liquid flow rate.
    Joshi SG; Jin Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):475-7. PubMed ID: 18285065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.