These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34442561)

  • 21. A micro-machined piezoelectric flexural-mode hydrophone with air backing: benefit of air backing for enhancing sensitivity.
    Lee H; Choi S; Moon W
    J Acoust Soc Am; 2010 Sep; 128(3):1033-44. PubMed ID: 20815440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directivity Dependence of a Distributed Fiber Optic Hydrophone on Array Structure.
    Li W; Chen Y; Liang Y; Lu Y; Meng Z
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Direction-of-Arrival Estimation Algorithm Based on Compressed Sensing and Density-Based Spatial Clustering and Its Application in Signal Processing of MEMS Vector Hydrophone.
    Yan H; Chen T; Wang P; Zhang L; Cheng R; Bai Y
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33801009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on DOA Estimation Based on Acoustic Energy Flux Detection Using a Single MEMS Vector Hydrophone.
    Zhang X; Zhang G; Shang Z; Zhu S; Chen P; Wang R; Zhang W
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33567607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Miniature photonic-crystal hydrophone optimized for ocean acoustics.
    Kilic O; Digonnet MJ; Kino GS; Solgaard O
    J Acoust Soc Am; 2011 Apr; 129(4):1837-50. PubMed ID: 21476640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cymbal piezoelectric composite underwater acoustic transducer.
    Li D; Wu M; Oyang P; Xu X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e685-7. PubMed ID: 16793099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Capacitive Low-Frequency Hydrophone Based on Micronanostructured Iontronic Hydrogel for Underwater Monitoring.
    Zhao J; Hu Q; Fu T; Liu H; Yao Y; Zhou W; Zhu Z
    ACS Nano; 2024 Aug; 18(33):22010-22020. PubMed ID: 39106474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DFB fiber laser hydrophone with band-pass response.
    Zhang F; Zhang W; Li F; Liu Y
    Opt Lett; 2011 Nov; 36(22):4320-2. PubMed ID: 22089550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A micro-machined piezoelectric flexural-mode hydrophone with air backing: a hydrostatic pressure-balancing mechanism for integrity preservation.
    Choi S; Lee H; Moon W
    J Acoust Soc Am; 2010 Sep; 128(3):1021-32. PubMed ID: 20815439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a Novel Medical Acoustic Sensor Based on MEMS Bionic Fish Ear Structure.
    Zhou C; Zang J; Xue C; Ma Y; Hua X; Gao R; Zhang Z; Li B; Zhang Z
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure compensated fiber laser hydrophone: modeling and experimentation.
    Chandrika UK; Pallayil V; Lim KM; Chew CH
    J Acoust Soc Am; 2013 Oct; 134(4):2710-8. PubMed ID: 24116409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distance from an intrauterine hydrophone as a factor affecting intrauterine sound pressure levels produced by the vibroacoustic stimulation test.
    Eller DP; Scardo JA; Dillon AE; Klein AJ; Stramm SL; Newman RB
    Am J Obstet Gynecol; 1995 Aug; 173(2):523-7. PubMed ID: 7645631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Sensitivity Cuboid Interferometric Fiber-Optic Hydrophone Based on Planar Rectangular Film Sensing.
    Wang W; Pei Y; Ye L; Song K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Fabrication of an Integrated Hollow Concave Cilium MEMS Cardiac Sound Sensor.
    Wang B; Shi P; Yang Y; Cui J; Zhang G; Wang R; Zhang W; He C; Li Y; Wang S
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative reconstruction of a disturbed ultrasound pressure field in a conventional hydrophone measurement.
    Chen L; Rupitsch SJ; Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1199-206. PubMed ID: 25004482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MEMS Hydrophone Signal Denoising and Baseline Drift Removal Algorithm Based on Parameter-Optimized Variational Mode Decomposition and Correlation Coefficient.
    Yan H; Xu T; Wang P; Zhang L; Hu H; Bai Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31652974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Design and Implementation of Heart Sound Detection Device Based on MEMS MIC].
    Ding D; Li Q; Dong Y; Wang W; Yang B
    Zhongguo Yi Liao Qi Xie Za Zhi; 2019 Sep; 43(5):337-340. PubMed ID: 31625330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A theoretical model describing the transfer characteristics of a membrane hydrophone and validation.
    GĂ©lat PN; Preston RC; Hurrell A
    Ultrasonics; 2005 Mar; 43(5):331-41. PubMed ID: 15737383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.