BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 34442612)

  • 1. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents.
    Wang L; Jiao L; Pang S; Yan P; Wang X; Qiu T
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of 3D-Printed Sulfated Chitosan Modified Bioresorbable Stents for Coronary Artery Disease.
    Qiu T; Jiang W; Yan P; Jiao L; Wang X
    Front Bioeng Biotechnol; 2020; 8():462. PubMed ID: 32509747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties.
    Sousa AM; Amaro AM; Piedade AP
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies.
    Oliver AA; Sikora-Jasinska M; Demir AG; Guillory RJ
    Acta Biomater; 2021 Jun; 127():1-23. PubMed ID: 33823325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioresorbable stents: Current and upcoming bioresorbable technologies.
    Ang HY; Bulluck H; Wong P; Venkatraman SS; Huang Y; Foin N
    Int J Cardiol; 2017 Feb; 228():931-939. PubMed ID: 27912202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing advances in the development of stents.
    Khalaj R; Tabriz AG; Okereke MI; Douroumis D
    Int J Pharm; 2021 Nov; 609():121153. PubMed ID: 34624441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial.
    Kandzari DE; Mauri L; Koolen JJ; Massaro JM; Doros G; Garcia-Garcia HM; Bennett J; Roguin A; Gharib EG; Cutlip DE; Waksman R;
    Lancet; 2017 Oct; 390(10105):1843-1852. PubMed ID: 28851504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents.
    Yeazel TR; Becker ML
    Biomacromolecules; 2020 Oct; 21(10):3957-3965. PubMed ID: 32924443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Biodegradable Polymeric Stents for the Treatment of Cardiovascular Diseases.
    Shen Y; Yu X; Cui J; Yu F; Liu M; Chen Y; Wu J; Sun B; Mo X
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From drug eluting stents to bioresorbable scaffolds; to new horizons in PCI.
    Tenekecioglu E; Bourantas C; Abdelghani M; Zeng Y; Silva RC; Tateishi H; Sotomi Y; Onuma Y; Yılmaz M; Serruys PW
    Expert Rev Med Devices; 2016; 13(3):271-86. PubMed ID: 26782080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug loaded nanoparticle coating on totally bioresorbable PLLA stents to prevent in-stent restenosis.
    Zhao J; Mo Z; Guo F; Shi D; Han QQ; Liu Q
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):88-95. PubMed ID: 27875036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravascular bioresorbable polymeric stents: a potential alternative to current drug eluting metal stents.
    Sharkawi T; Cornhill F; Lafont A; Sabaria P; Vert M
    J Pharm Sci; 2007 Nov; 96(11):2829-37. PubMed ID: 17979210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives.
    Hu T; Yang C; Lin S; Yu Q; Wang G
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():163-178. PubMed ID: 30033243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nontoxic additive to introduce x-ray contrast into poly(lactic acid). Implications for transient medical implants such as bioresorbable coronary vascular scaffolds.
    Wang Y; van den Akker NM; Molin DG; Gagliardi M; van der Marel C; Lutz M; Knetsch ML; Koole LH
    Adv Healthc Mater; 2014 Feb; 3(2):290-9. PubMed ID: 23950056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioresorbable Stents in PCI.
    Lindholm D; James S
    Curr Cardiol Rep; 2016 Aug; 18(8):74. PubMed ID: 27312934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents.
    Zilberman M; Nelson KD; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):792-9. PubMed ID: 15991233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release.
    Zilberman M; Schwade ND; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2004 Apr; 69(1):1-10. PubMed ID: 15015203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.