These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34442724)

  • 1. Phytase-Producing
    Li GE; Kong WL; Wu XQ; Ma SB
    Microorganisms; 2021 Jul; 9(8):. PubMed ID: 34442724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt Tolerance Mechanism of the Rhizosphere Bacterium JZ-GX1 and Its Effects on Tomato Seed Germination and Seedling Growth.
    Li PS; Kong WL; Wu XQ
    Front Microbiol; 2021; 12():657238. PubMed ID: 34168626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatile Organic Compounds of the Plant Growth-Promoting Rhizobacteria JZ-GX1 Enhanced the Tolerance of
    Li PS; Kong WL; Wu XQ; Zhang Y
    Front Plant Sci; 2021; 12():753332. PubMed ID: 34721482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Iron Uptake in Plants by Volatile Emissions of
    Kong WL; Wang YH; Wu XQ
    Front Plant Sci; 2021; 12():704000. PubMed ID: 34394158
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Kong WL; Wang YH; Lu LX; Li PS; Zhang Y; Wu XQ
    Front Plant Sci; 2022; 13():960750. PubMed ID: 36186024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.
    Li GE; Wu XQ; Ye JR; Hou L; Zhou AD; Zhao L
    World J Microbiol Biotechnol; 2013 Nov; 29(11):2181-93. PubMed ID: 23709169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Sequencing of
    Kong WL; Wang WY; Zuo SH; Wu XQ
    Front Microbiol; 2022; 13():828990. PubMed ID: 35464970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal Effects of Volatile Organic Compounds Produced by
    Kong WL; Rui L; Ni H; Wu XQ
    Front Microbiol; 2020; 11():1114. PubMed ID: 32547526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of acdS gene reduces plant growth promotion activity and maize saline stress resistance by Rahnella aquatilis HX2.
    Peng J; Wu D; Liang Y; Li L; Guo Y
    J Basic Microbiol; 2019 Apr; 59(4):402-411. PubMed ID: 30644572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Rahnella aquatilis on arsenic accumulation by Vallisneria natans (Lour.) Hara for the phytoremediation of arsenic-contaminated water.
    Chen G; Ran Y; Ma Y; Chen Z; Li Z; Chen Y
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):44354-44360. PubMed ID: 33851290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis.
    El-Hendawy HH; Osman ME; Sorour NM
    Microbiol Res; 2005; 160(4):343-52. PubMed ID: 16255138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete genome sequence of Rahnella aquatilis ZF7 reveals potential beneficial properties and stress tolerance capabilities.
    Yuan L; Li L; Zheng F; Shi Y; Xie X; Chai A; Li B
    Arch Microbiol; 2020 Apr; 202(3):483-499. PubMed ID: 31707426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination.
    Li H; Yue H; Li L; Liu Y; Zhang H; Wang J; Jiang X
    AMB Express; 2021 May; 11(1):74. PubMed ID: 34032933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum).
    Azeke MA; Egielewa SJ; Eigbogbo MU; Ihimire IG
    J Food Sci Technol; 2011 Dec; 48(6):724-9. PubMed ID: 23572811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize.
    Wang XX; Hoffland E; Feng G; Kuyper TW
    Front Plant Sci; 2017; 8():684. PubMed ID: 28503185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seed coating with micronutrients improves germination, growth, yield and microelement nutrients of maize (
    Chen FB; Feng YC; Huo SP
    Biotech Histochem; 2023 May; 98(4):230-242. PubMed ID: 37165769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biopriming of maize seeds with plant growth-promoting bacteria isolated from the earthworm Aporrectodea molleri: effect on seed germination and seedling growth.
    Houida S; Yakkou L; Kaya LO; Bilen S; Fadil M; Raouane M; El Harti A; Amghar S
    Lett Appl Microbiol; 2022 Jul; 75(1):61-69. PubMed ID: 35285049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of
    Landa-Acuña D; Toro M; Santos-Mendoza R; Zúñiga-Dávila D
    Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375098
    [No Abstract]   [Full Text] [Related]  

  • 19. Physiological Characteristics, Phytase Activity, and Mineral Bioavailability of a Low-Phytate Soybean Line during Germination.
    Dong Q; Saneoka H
    Plant Foods Hum Nutr; 2020 Sep; 75(3):383-389. PubMed ID: 32440755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils.
    Rafique M; Ortas I; Rizwan M; Chaudhary HJ; Gurmani AR; Hussain Munis MF
    Chemosphere; 2020 Jan; 238():124710. PubMed ID: 31545216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.