These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34442729)

  • 1. Longevity Regulation by Proline Oxidation in Yeast.
    Nishimura A; Yoshikawa Y; Ichikawa K; Takemoto T; Tanahashi R; Takagi H
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline metabolism regulates replicative lifespan in the yeast
    Mukai Y; Kamei Y; Liu X; Jiang S; Sugimoto Y; Mat Nanyan NSB; Watanabe D; Takagi H
    Microb Cell; 2019 Sep; 6(10):482-490. PubMed ID: 31646149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putative mitochondrial α-ketoglutarate-dependent dioxygenase Fmp12 controls utilization of proline as an energy source in
    Nishida I; Watanabe D; Takagi H
    Microb Cell; 2016 Sep; 3(10):522-528. PubMed ID: 28357320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene.
    Wang SS; Brandriss MC
    Mol Cell Biol; 1986 Jul; 6(7):2638-45. PubMed ID: 3537723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences.
    Siddiqui AH; Brandriss MC
    Mol Cell Biol; 1989 Nov; 9(11):4706-12. PubMed ID: 2689862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Put3 Positively Regulates Proline Utilization in
    Tebung WA; Omran RP; Fulton DL; Morschhäuser J; Whiteway M
    mSphere; 2017; 2(6):. PubMed ID: 29242833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
    Xu S; Falvey DA; Brandriss MC
    Mol Cell Biol; 1995 Apr; 15(4):2321-30. PubMed ID: 7891726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator.
    Marczak JE; Brandriss MC
    Mol Cell Biol; 1989 Nov; 9(11):4696-705. PubMed ID: 2689861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae.
    Morita Y; Nakamori S; Takagi H
    J Biosci Bioeng; 2002; 94(5):390-4. PubMed ID: 16233323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae.
    Spitzner A; Perzlmaier AF; Geillinger KE; Reihl P; Stolz J
    Genetics; 2008 Dec; 180(4):2007-17. PubMed ID: 18940788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.
    Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product.
    Wang SS; Brandriss MC
    Mol Cell Biol; 1987 Dec; 7(12):4431-40. PubMed ID: 3125423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous glucosylglycerol and proline extend the chronological lifespan of Rhodosporidium toruloides.
    Odoh CK; Xue H; Zhao ZK
    Int Microbiol; 2023 Nov; 26(4):807-819. PubMed ID: 36786919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae.
    Brandriss MC
    Genetics; 1987 Nov; 117(3):429-35. PubMed ID: 3121434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline.
    Brandriss MC; Magasanik B
    J Bacteriol; 1979 Nov; 140(2):498-503. PubMed ID: 387737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels.
    Takagi H; Taguchi J; Kaino T
    Yeast; 2016 Aug; 33(8):355-63. PubMed ID: 26833688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis.
    Kiyosue T; Yoshiba Y; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Cell; 1996 Aug; 8(8):1323-35. PubMed ID: 8776899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.
    Nishimura A; Kotani T; Sasano Y; Takagi H
    FEMS Yeast Res; 2010 Sep; 10(6):687-98. PubMed ID: 20550582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae.
    Takagi H; Sakai K; Morida K; Nakamori S
    FEMS Microbiol Lett; 2000 Mar; 184(1):103-8. PubMed ID: 10689174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.
    Takagi H
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):211-23. PubMed ID: 18802692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.