These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 34442924)
1. In-Line Observation of Laser Cladding Processes via Atomic Emission Spectroscopy. Schmidt M; Huke P; Gerhard C; Partes K Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442924 [TBL] [Abstract][Full Text] [Related]
2. In situ elemental analysis and failures detection during additive manufacturing process utilizing laser induced breakdown spectroscopy. Lednev VN; Sdvizhenskii PA; Asyutin RD; Tretyakov RS; Grishin MY; Stavertiy AY; Fedorov AN; Pershin SM Opt Express; 2019 Feb; 27(4):4612-4628. PubMed ID: 30876076 [TBL] [Abstract][Full Text] [Related]
3. Numerical Simulation Study of Multi-Field Coupling for Laser Cladding of Shaft Parts. Zhao C; Ma C; Yang J; Li M; Zhao Q; Ma H; Jia X Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838193 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Monitoring of Chemical Composition in Nickel-Based Laser Cladding Layer by Emission Spectroscopy Analysis. Wang S; Liu C Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31430952 [TBL] [Abstract][Full Text] [Related]
5. Statistical Analysis of Morphological Characteristics of Inconel 718 Formed by High Deposition Rate and High Laser Power Laser Cladding. Bian Y; He X; Tian C; Guo J; Chen B; Dong B; Li S; Yu G Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591470 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Melt Pool Characteristics and Process Parameters Using a Coaxial Monitoring System during Directed Energy Deposition in Additive Manufacturing. Kledwig C; Perfahl H; Reisacher M; Brückner F; Bliedtner J; Leyens C Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669432 [TBL] [Abstract][Full Text] [Related]
7. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets. Gabriel T; Rommel D; Scherm F; Gorywoda M; Glatzel U Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772639 [TBL] [Abstract][Full Text] [Related]
8. Coupling Characteristics of Powder and Laser of Coaxial Cone Nozzle for Laser Direct Metal Deposition: Numerical Simulation and Experimental Study. Wang Z; Hu K; Yang L; Zhang J; Ding H; Pan Z Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176284 [TBL] [Abstract][Full Text] [Related]
9. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Yeung H; Lane B; Fox J Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600 [TBL] [Abstract][Full Text] [Related]
10. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding. Goffin NJ; Higginson RL; Tyrer JR Proc Math Phys Eng Sci; 2016 Dec; 472(2196):20160603. PubMed ID: 28119550 [TBL] [Abstract][Full Text] [Related]
11. Combining thermal imaging and spectral pyrometry for express temperature mapping in additive manufacturing. Grishin MY; Sdvizhenskii PA; Asyutin RD; Tretyakov RS; Stavertiy AY; Pershin SM; Liu DS; Lednev VN Appl Opt; 2023 Jan; 62(2):335-341. PubMed ID: 36630231 [TBL] [Abstract][Full Text] [Related]
12. Optimization of Process Parameters, Microstructure, and Properties of Laser Cladding Fe-Based Alloy on 42CrMo Steel Roller. Ju J; Zhou Y; Kang M; Wang J Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30360401 [TBL] [Abstract][Full Text] [Related]
13. Laser Remelting Process Simulation and Optimization for Additive Manufacturing of Nickel-Based Super Alloys. Soffel F; Lin Y; Keller D; Egorov S; Wegener K Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009327 [TBL] [Abstract][Full Text] [Related]
14. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method. Singh SN; Chowdhury S; Nirsanametla Y; Deepati AK; Prakash C; Singh S; Wu LY; Zheng HY; Pruncu C Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673267 [TBL] [Abstract][Full Text] [Related]
15. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process. Fu G; Zhang DZ; He AN; Mao Z; Zhang K Materials (Basel); 2018 May; 11(5):. PubMed ID: 29748473 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593 [TBL] [Abstract][Full Text] [Related]
17. Production of Single Tracks of Ti-6Al-4V by Directed Energy Deposition to Determine the Layer Thickness for Multilayer Deposition. Saboori A; Tusacciu S; Busatto M; Lai M; Biamino S; Fino P; Lombardi M J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608163 [TBL] [Abstract][Full Text] [Related]
18. Effects of Electromagnetic Fields on the Microstructure of Laser Cladding. Shi Y; Zhou X; Wang X; Feng X; Peng L Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744256 [TBL] [Abstract][Full Text] [Related]
19. In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing. Wolff SJ; Wu H; Parab N; Zhao C; Ehmann KF; Sun T; Cao J Sci Rep; 2019 Jan; 9(1):962. PubMed ID: 30700736 [TBL] [Abstract][Full Text] [Related]
20. Microstructure of Rhenium Doped Ni-Cr Deposits Produced by Laser Cladding. Kołodziejczak P; Golański D; Chmielewski T; Chmielewski M Materials (Basel); 2021 May; 14(11):. PubMed ID: 34067488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]