These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34442924)

  • 41. Online Measurement of Melt-Pool Width in Direct Laser Deposition Process Based on Binocular Vision and Perspective Transformation.
    Lu Y; Xiao M; Chen X; Sang Y; Liu Z; Jin X; Zhang Z
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-situ porosity recognition for laser additive manufacturing of 7075-Al alloy using plasma emission spectroscopy.
    Ren W; Mazumder J
    Sci Rep; 2020 Nov; 10(1):19493. PubMed ID: 33173068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design a New Type of Laser Cladding Nozzle and Thermal Fluid Solid Multi-Field Simulation Analysis.
    Zhang Y; Jin Y; Chen Y; Liu J
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.
    Ly S; Rubenchik AM; Khairallah SA; Guss G; Matthews MJ
    Sci Rep; 2017 Jun; 7(1):4085. PubMed ID: 28642468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing.
    Leung CLA; Marussi S; Atwood RC; Towrie M; Withers PJ; Lee PD
    Nat Commun; 2018 Apr; 9(1):1355. PubMed ID: 29636443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrasonic Characterization of Components Manufactured by Direct Laser Metal Deposition.
    Castellano A; Mazzarisi M; Campanelli SL; Angelastro A; Fraddosio A; Piccioni MD
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32545202
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: initial test with elemental Hg.
    Sahay P; Scherrer ST; Wang C
    Rev Sci Instrum; 2012 Sep; 83(9):095109. PubMed ID: 23020421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.
    Krzyzanowski M; Bajda S; Liu Y; Triantaphyllou A; Mark Rainforth W; Glendenning M
    J Mech Behav Biomed Mater; 2016 Jun; 59():404-417. PubMed ID: 26953962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy.
    Shen H; Yan J; Niu X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts.
    Galati M; Minetola P
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effect of KCI additive on laser-induced soil plasma radiation].
    Chen JZ; Zhang LJ; Yang SP; Wei YH; Li X; Guo QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2601-5. PubMed ID: 21137381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Short Time Correlation Analysis of Melt Pool Behavior in Laser Metal Deposition Using Coaxial Optical Monitoring.
    Zavalov YN; Dubrov AV
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960496
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components.
    Skalon M; Meier B; Leitner T; Arneitz S; Amancio-Filho ST; Sommitsch C
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Thermo-Mechanical Coupling Effect in Selective Laser Melting of Aluminum Alloy Powder.
    Duan X; Chen X; Zhu K; Long T; Huang S; Jerry FYH
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing the use of an infrared spectrum hyperpixel array imager to measure temperature during additive and subtractive manufacturing.
    Whitenton E; Heigel J; Lane B; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 9861():. PubMed ID: 32116403
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of ultrafine particles emitted during laser-based additive manufacturing of metal parts.
    Noskov A; Ervik TK; Tsivilskiy I; Gilmutdinov A; Thomassen Y
    Sci Rep; 2020 Dec; 10(1):20989. PubMed ID: 33268812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Plasma spectral analysis of laser cleaning process in air].
    Tong YQ; Zhang YK; Yao HB; Meng CM; Guan HB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Sep; 31(9):2542-5. PubMed ID: 22097867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Processability of Atypical WC-Co Composite Feedstock by Laser Powder-Bed Fusion.
    Al-Thamir M; McCartney DG; Simonelli M; Hague R; Clare A
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of toxic metals in leather by wavelength dispersive X-ray fluorescence (WDXRF) and inductively coupled plasma optical emission spectrometry (ICP OES) with emphasis on chromium.
    Neiva AM; Sperança MA; Costa VC; Jacinto MAC; Pereira-Filho ER
    Environ Monit Assess; 2018 Sep; 190(10):618. PubMed ID: 30267231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.