BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34442926)

  • 1. PCL-Coated Multi-Substituted Calcium Phosphate Bone Scaffolds with Enhanced Properties.
    Bauer L; Antunović M; Gallego-Ferrer G; Ivanković M; Ivanković H
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Scaffolds Based on Mn
    Bauer L; Antunović M; Ivanković H; Ivanković M
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings.
    Robinson L; Salma-Ancane K; Stipniece L; Meenan BJ; Boyd AR
    J Mater Sci Mater Med; 2017 Mar; 28(3):51. PubMed ID: 28197823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings.
    Neto AS; Fonseca AC; Abrantes JCC; Coelho JFJ; Ferreira JMF
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110014. PubMed ID: 31546414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells.
    Cheng H; Chabok R; Guan X; Chawla A; Li Y; Khademhosseini A; Jang HL
    Acta Biomater; 2018 Mar; 69():342-351. PubMed ID: 29366976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects.
    Luo Y; Chen S; Shi Y; Ma J
    Biomed Mater; 2018 Aug; 13(6):065004. PubMed ID: 30091422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodeposition of Sr-substituted hydroxyapatite on low modulus beta-type Ti-45Nb and effect on in vitro Sr release and cell response.
    Schmidt R; Gebert A; Schumacher M; Hoffmann V; Voss A; Pilz S; Uhlemann M; Lode A; Gelinsky M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110425. PubMed ID: 31923935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MgCHA particles dispersion in porous PCL scaffolds: in vitro mineralization and in vivo bone formation.
    Guarino V; Scaglione S; Sandri M; Alvarez-Perez MA; Tampieri A; Quarto R; Ambrosio L
    J Tissue Eng Regen Med; 2014 Apr; 8(4):291-303. PubMed ID: 22730225
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Pereira P; Neto AS; Rodrigues AS; Barros I; Miranda C; Ramalho-Santos J; Pereira de Almeida L; Ferreira JMF; Coelho JFJ; Fonseca AC
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium-Based Whitlockite Bone Mineral Promotes Neural and Osteogenic Activities.
    Yang Y; Wang H; Yang H; Zhao Y; Guo J; Yin X; Ma T; Liu X; Li L
    ACS Biomater Sci Eng; 2020 Oct; 6(10):5785-5796. PubMed ID: 33320584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics.
    Singh SS; Roy A; Lee B; Kumta PN
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():219-228. PubMed ID: 27127047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone.
    Ressler A; Cvetnić M; Antunović M; Marijanović I; Ivanković M; Ivanković H
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1697-1709. PubMed ID: 31738012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCL/Si-Doped Multi-Phase Calcium Phosphate Scaffolds Derived from Cuttlefish Bone.
    Ressler A; Bauer L; Prebeg T; Ledinski M; Hussainova I; Urlić I; Ivanković M; Ivanković H
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.