BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34443053)

  • 1. Ru Catalyst Encapsulated into the Pores of MIL-101 MOF: Direct Visualization by TEM.
    Meledina M; Watson G; Meledin A; Van Der Voort P; Mayer J; Leus K
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PdRu Bimetallic Nanoparticles/Metal-Organic Framework Composite through Supercritical CO
    Matsuyama K; Matsuoka T; Eiro M; Kato T; Okuyama T
    ACS Omega; 2024 May; 9(18):20437-20443. PubMed ID: 38737038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Solid-State Fluorescence of Flavin Derivatives by Incorporation in the Metal-Organic Frameworks MIL-53(Al) and MOF-5.
    Püschel D; Hédé S; Maisuls I; Höfert SP; Woschko D; Kühnemuth R; Felekyan S; Seidel CAM; Czekelius C; Weingart O; Strassert CA; Janiak C
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles.
    Huang Y; Lin Z; Cao R
    Chemistry; 2011 Nov; 17(45):12706-12. PubMed ID: 21956646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst.
    Leus K; Dendooven J; Tahir N; Ramachandran RK; Meledina M; Turner S; Van Tendeloo G; Goeman JL; Van der Eycken J; Detavernier C; Van Der Voort P
    Nanomaterials (Basel); 2016 Mar; 6(3):. PubMed ID: 28344301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable catalysis: rational Pd loading on MIL-101Cr-NH2 for more efficient and recyclable Suzuki-Miyaura reactions.
    Pascanu V; Yao Q; Bermejo Gómez A; Gustafsson M; Yun Y; Wan W; Samain L; Zou X; Martín-Matute B
    Chemistry; 2013 Dec; 19(51):17483-93. PubMed ID: 24265270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WO
    Wang L; Zan L
    Sci Rep; 2019 Mar; 9(1):4860. PubMed ID: 30890746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palladium Nanoparticles Encapsulated in the MIL-101-Catalyzed One-Pot Reaction of Alcohol Oxidation and Aldimine Condensation.
    Zhang YY; Li JX; Ding LL; Liu L; Wang SM; Han ZB
    Inorg Chem; 2018 Nov; 57(21):13586-13593. PubMed ID: 30335373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.
    Chen J; Wang S; Huang J; Chen L; Ma L; Huang X
    ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Ag Nanoparticles in/on Ag@MIL-100(Fe) Prepared Through Different Procedures.
    Mahugo R; Mayoral A; Sánchez-Sánchez M; Diaz I
    Front Chem; 2019; 7():686. PubMed ID: 31696106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-loaded metal-organic framework of type MIL-101(Cr)-NH
    Tan SC; Zulkifli FIB; Lee HK
    Mikrochim Acta; 2021 Jan; 188(2):30. PubMed ID: 33415463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: Synergic boost to hydrogen production from formic acid.
    Alamgholiloo H; Rostamnia S; Hassankhani A; Liu X; Eftekhari A; Hasanzadeh A; Zhang K; Karimi-Maleh H; Khaksar S; Varma RS; Shokouhimehr M
    J Colloid Interface Sci; 2020 May; 567():126-135. PubMed ID: 32044541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amine-functionalized MIL-53(Al) with embedded ruthenium nanoparticles as a highly efficient catalyst for the hydrolytic dehydrogenation of ammonia borane.
    Zhang S; Zhou L; Chen M
    RSC Adv; 2018 Mar; 8(22):12282-12291. PubMed ID: 35539406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment.
    Grigoropoulos A; McKay AI; Katsoulidis AP; Davies RP; Haynes A; Brammer L; Xiao J; Weller AS; Rosseinsky MJ
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4532-4537. PubMed ID: 29377466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turning Redundant Ligands into Treasure: A New Strategy for Constructing MIL-53(Al)@Nanoscale TiO2 Layers.
    Gu Y; Wu YN; Shen J; Li Z; Chen S; Lu H; Li F
    Chemistry; 2015 Nov; 21(48):17485-90. PubMed ID: 26463359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation of a Porous Organic Cage into the Pores of a Metal-Organic Framework for Enhanced CO
    Liang J; Nuhnen A; Millan S; Breitzke H; Gvilava V; Buntkowsky G; Janiak C
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6068-6073. PubMed ID: 31912916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vapor Deposition-Prepared MIL-100(Cr)- and MIL-101(Cr)-Supported Iron Catalysts for Effectively Removing Organic Pollutants from Water.
    Zhuang H; Zhang W; Wang L; Zhu Y; Xi Y; Lin X
    ACS Omega; 2021 Oct; 6(39):25311-25322. PubMed ID: 34632189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of a Full Photosystem in the Large-Pore MIL-101 Metal-Organic Framework for CO
    Wang X; Wisser FM; Canivet J; Fontecave M; Mellot-Draznieks C
    ChemSusChem; 2018 Sep; 11(18):3315-3322. PubMed ID: 29978953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulating polyaniline within porous MIL-101 for high-performance corrosion protection.
    Ren B; Li Y; Meng D; Li J; Gao S; Cao R
    J Colloid Interface Sci; 2020 Nov; 579():842-852. PubMed ID: 32679381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO
    Bhadra BN; Song JY; Khan NA; Jhung SH
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31192-31202. PubMed ID: 28820235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.