These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34443092)

  • 1. Recovery of Metals from Heat-Treated Printed Circuit Boards via an Enhanced Gravity Concentrator and High-Gradient Magnetic Separator.
    Xian Y; Tao Y; Ma F; Zhou Y
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill.
    Yoo JM; Jeong J; Yoo K; Lee JC; Kim W
    Waste Manag; 2009 Mar; 29(3):1132-7. PubMed ID: 18835149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of Cu and Zn from waste printed circuit boards using super-gravity separation.
    Meng L; Zhong Y; Guo L; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Aug; 78():559-565. PubMed ID: 32559945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of metals from metal-rich particles of crushed waste printed circuit boards by low-pressure filtration.
    Meng L; Guo L; Guo Z
    Waste Manag; 2019 Feb; 84():227-234. PubMed ID: 30691897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the non-metal fraction of the processed waste printed circuit boards.
    Kumar A; Holuszko ME; Janke T
    Waste Manag; 2018 May; 75():94-102. PubMed ID: 29449113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of metals from waste printed circuit boards by a mechanical method using a water medium.
    Duan C; Wen X; Shi C; Zhao Y; Wen B; He Y
    J Hazard Mater; 2009 Jul; 166(1):478-82. PubMed ID: 19121892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and thermal processing of Waste Printed Circuit Boards aiming for the recovery of gold and copper.
    Ventura E; Futuro A; Pinho SC; Almeida MF; Dias JM
    J Environ Manage; 2018 Oct; 223():297-305. PubMed ID: 29935444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.
    Fujita T; Ono H; Dodbiba G; Yamaguchi K
    Waste Manag; 2014 Jul; 34(7):1264-73. PubMed ID: 24703485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of rejects from waste printed circuit board processing as an alternative fuel for the cement industry.
    Kumar A; Holuszko ME; Janke T
    Waste Manag Res; 2021 Jun; 39(6):841-848. PubMed ID: 32907519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravity and Electrostatic Separation for Recovering Metals from Obsolete Printed Circuit Board.
    de Oliveira CM; Bellopede R; Tori A; Zanetti G; Marini P
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separating and recycling metal mixture of pyrolyzed waste printed circuit boards by a combined method.
    Chen B; He J; Sun X; Zhao J; Jiang H; Zhang L
    Waste Manag; 2020 Apr; 107():113-120. PubMed ID: 32278216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of precious metals from waste printed circuit boards using supergravity separation.
    Meng L; Guo L; Zhong Y; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Dec; 82():147-155. PubMed ID: 30509576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of pyrolysis for the recovery of metallic values from ball grid arrays.
    Mir S; Dhawan N
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90180-90194. PubMed ID: 36692715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy recovery from waste printed circuit boards using microwave pyrolysis: product characteristics, reaction kinetics, and benefits.
    Huang YF; Lo SL
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43274-43282. PubMed ID: 32734544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of thermal shock process on the microstructure and peel resistance of single-sided copper clad laminates used in waste printed circuit boards.
    Liu F; Wan B; Wang F; Chen W
    J Air Waste Manag Assoc; 2019 Dec; 69(12):1490-1502. PubMed ID: 31566485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.
    Zhang G; He Y; Wang H; Zhang T; Wang S; Yang X; Xia W
    Waste Manag; 2017 Jun; 64():228-235. PubMed ID: 28343744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High temperature investigations on optimising the recovery of copper from waste printed circuit boards.
    Cayumil R; Ikram-Ul-Haq M; Khanna R; Saini R; Mukherjee PS; Mishra BK; Sahajwalla V
    Waste Manag; 2018 Mar; 73():556-565. PubMed ID: 28089398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.
    Sarvar M; Salarirad MM; Shabani MA
    Waste Manag; 2015 Nov; 45():246-57. PubMed ID: 26143534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.