BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 34443297)

  • 1. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione.
    Čapek J; Roušar T
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants.
    Jomova K; Alomar SY; Alwasel SH; Nepovimova E; Kuca K; Valko M
    Arch Toxicol; 2024 May; 98(5):1323-1367. PubMed ID: 38483584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.
    He L; He T; Farrar S; Ji L; Liu T; Ma X
    Cell Physiol Biochem; 2017; 44(2):532-553. PubMed ID: 29145191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells.
    de Pinto MC; Tommasi F; De Gara L
    Plant Physiol; 2002 Oct; 130(2):698-708. PubMed ID: 12376637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species.
    Panday S; Talreja R; Kavdia M
    Microvasc Res; 2020 Sep; 131():104010. PubMed ID: 32335268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant potential of Sutherlandia frutescens and its protective effects against oxidative stress in various cell cultures.
    Tobwala S; Fan W; Hines CJ; Folk WR; Ercal N
    BMC Complement Altern Med; 2014 Jul; 14():271. PubMed ID: 25070435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of nanotoxicity: generation of reactive oxygen species.
    Fu PP; Xia Q; Hwang HM; Ray PC; Yu H
    J Food Drug Anal; 2014 Mar; 22(1):64-75. PubMed ID: 24673904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases.
    An Z; Yan J; Zhang Y; Pei R
    J Mater Chem B; 2020 Oct; 8(38):8748-8767. PubMed ID: 32869050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular catalase activity instead of glutathione level dominates the resistance of cells to reactive oxygen species.
    Zhao MX; Wen JL; Wang L; Wang XP; Chen TS
    Cell Stress Chaperones; 2019 May; 24(3):609-619. PubMed ID: 30989612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.
    Dunning S; Ur Rehman A; Tiebosch MH; Hannivoort RA; Haijer FW; Woudenberg J; van den Heuvel FA; Buist-Homan M; Faber KN; Moshage H
    Biochim Biophys Acta; 2013 Dec; 1832(12):2027-34. PubMed ID: 23871839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
    Gill SS; Tuteja N
    Plant Physiol Biochem; 2010 Dec; 48(12):909-30. PubMed ID: 20870416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species-activated nanomaterials as theranostic agents.
    Kim KS; Lee D; Song CG; Kang PM
    Nanomedicine (Lond); 2015; 10(17):2709-23. PubMed ID: 26328770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases.
    Dai Y; Guo Y; Tang W; Chen D; Xue L; Chen Y; Guo Y; Wei S; Wu M; Dai J; Wang S
    J Nanobiotechnology; 2024 May; 22(1):252. PubMed ID: 38750509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Signaling Response to Cadmium Exposure.
    Nemmiche S
    Toxicol Sci; 2017 Mar; 156(1):4-10. PubMed ID: 27803385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cytotoxic, non-estrogenic, oxidative stress-induced processes of zearalenone in the fission yeast Schizosaccharomyces pombe.
    Mike N; Papp G; Certik M; Czibulya Z; Kunsági-Máté S; Ember I; Vágvölgyi C; Pesti M; Gazdag Z
    Toxicon; 2013 Oct; 73():130-43. PubMed ID: 23896534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.
    Gallorini M; Petzel C; Bolay C; Hiller KA; Cataldi A; Buchalla W; Krifka S; Schweikl H
    Biomaterials; 2015 Jul; 56():114-28. PubMed ID: 25934285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular signal modulation by nanomaterials.
    Hussain S; Garantziotis S; Rodrigues-Lima F; Dupret JM; Baeza-Squiban A; Boland S
    Adv Exp Med Biol; 2014; 811():111-34. PubMed ID: 24683030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers.
    Krifka S; Spagnuolo G; Schmalz G; Schweikl H
    Biomaterials; 2013 Jun; 34(19):4555-63. PubMed ID: 23541107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular redox pathways as a therapeutic target in the treatment of cancer.
    Montero AJ; Jassem J
    Drugs; 2011 Jul; 71(11):1385-96. PubMed ID: 21812504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of reactive oxygen species, oxidative DNA damage and glutathione depletion to the sensitivity of Acinetobacter baumannii to 2-(2-nitrovinyl) furan.
    Ajiboye TO
    Microb Pathog; 2019 Mar; 128():342-346. PubMed ID: 30682524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.