BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34443315)

  • 1. Valorization of Byproducts of Hemp Multipurpose Crop: Short Non-Aligned Bast Fibers as a Source of Nanocellulose.
    Dalle Vacche S; Karunakaran V; Patrucco A; Zoccola M; Douard L; Ronchetti S; Gallo M; Schreier A; Leterrier Y; Bras J; Beneventi D; Bongiovanni R
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different nanocellulose morphologies (cellulose nanofibers, nanocrystals and nanospheres) extracted from Sunn hemp (Crotalaria Juncea).
    Mahur BK; Ahuja A; Singh S; Maji PK; Rastogi VK
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126657. PubMed ID: 37660858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp.
    Gümüşkaya E; Usta M; Balaban M
    Bioresour Technol; 2007 Feb; 98(3):491-7. PubMed ID: 16757165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: Surface and thermal characterization.
    George M; Mussone PG; Bressler DC
    Carbohydr Polym; 2015 Dec; 134():230-9. PubMed ID: 26428120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.
    Li J; Wei X; Wang Q; Chen J; Chang G; Kong L; Su J; Liu Y
    Carbohydr Polym; 2012 Nov; 90(4):1609-13. PubMed ID: 22944423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in hemp secondary fiber production related to technical fiber variability revealed by light microscopy and attenuated total reflectance Fourier transform infrared spectroscopy.
    Fernandez-Tendero E; Day A; Legros S; Habrant A; Hawkins S; Chabbert B
    PLoS One; 2017; 12(6):e0179794. PubMed ID: 28640922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix.
    Li W; Zhao X; Liu S
    Carbohydr Polym; 2013 Apr; 94(1):278-85. PubMed ID: 23544539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano.
    Karimi S; Tahir PM; Karimi A; Dufresne A; Abdulkhani A
    Carbohydr Polym; 2014 Jan; 101():878-85. PubMed ID: 24299851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Chènevotte, a Valuable Co-Product of Industrial Hemp Fiber, as Adsorbent for Pollutant Removal. Part I: Chemical, Microscopic, Spectroscopic and Thermogravimetric Characterization of Raw and Modified Samples.
    Mongioví C; Lacalamita D; Morin-Crini N; Gabrion X; Ivanovska A; Sala F; Placet V; Rizzi V; Gubitosa J; Mesto E; Ribeiro ARL; Fini P; Vietro N; Schingaro E; Kostić M; Cosentino C; Cosma P; Bradu C; Chanet G; Crini G
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of cellulose fibers from Meghatyrsus maximus: Applications in its chemical derivatives.
    Gonzalez M; Pereira-Rojas J; Villanueva I; Agüero B; Silva I; Velasquez I; Delgado B; Hernandez J; Rodriguez G; Labrador H; Barros H; Pereira J
    Carbohydr Polym; 2022 Nov; 296():119918. PubMed ID: 36088021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction and Characterization of Nanocellulose Structures from Linter Dissolving Pulp Using Ultrafine Grinder.
    Ghasemi S; Behrooz R; Ghasemi I
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5791-7. PubMed ID: 27427633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M; Lopes da Silva L; Durán N; Tasic L
    Molecules; 2015 Apr; 20(4):5908-23. PubMed ID: 25854755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk.
    Guo Y; Zhang Y; Zheng D; Li M; Yue J
    Int J Biol Macromol; 2020 Nov; 163():927-933. PubMed ID: 32640323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication.
    Khan MN; Rehman N; Sharif A; Ahmed E; Farooqi ZH; Din MI
    Int J Biol Macromol; 2020 Jun; 153():72-78. PubMed ID: 32135259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically and mechanically isolated nanocellulose and their self-assembled structures.
    Jiang F; Hsieh YL
    Carbohydr Polym; 2013 Jun; 95(1):32-40. PubMed ID: 23618236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative process for obtaining modified nanocellulose from soybean straw.
    Souza AG; Santos DF; Ferreira RR; Pinto VZ; Rosa DS
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1803-1812. PubMed ID: 33075342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Better together: synergy in nanocellulose blends.
    Mautner A; Mayer F; Hervy M; Lee KY; Bismarck A
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.