BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34443335)

  • 1. Inhibition of Cysteine Proteases by 6,6'-Dihydroxythiobinupharidine (DTBN) from
    Waidha K; Zurgil U; Ben-Zeev E; Gopas J; Rajendran S; Golan-Goldhirsh A
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro and In Vivo Therapeutic Potential of 6,6'-Dihydroxythiobinupharidine (DTBN) from
    Weiss S; Waidha K; Rajendran S; Benharroch D; Khalilia J; Levy H; Bar-David E; Golan-Goldhirsh A; Gopas J; Ben-Shmuel A
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 6,6'-Dihydroxythiobinupharidine (DTBN) Purified from
    Waidha K; Anto NP; Jayaram DR; Golan-Goldhirsh A; Rajendran S; Livneh E; Gopas J
    Molecules; 2021 May; 26(9):. PubMed ID: 34066895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action mechanism of 6, 6'-dihydroxythiobinupharidine from Nuphar japonicum, which showed anti-MRSA and anti-VRE activities.
    Okamura S; Nishiyama E; Yamazaki T; Otsuka N; Taniguchi S; Ogawa W; Hatano T; Tsuchiya T; Kuroda T
    Biochim Biophys Acta; 2015 Jun; 1850(6):1245-52. PubMed ID: 25731981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Nuphar lutea plant active ingredient, 6,6'-dihydroxythiobinupharidine, ameliorates kidney damage and inflammation in a mouse model of chronic kidney disease.
    Landau D; Khalilia J; Arazi E; Tobar AF; Benharroch D; Golan-Goldhirsh A; Gopas J; Segev Y
    Sci Rep; 2024 Mar; 14(1):7577. PubMed ID: 38555397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L.
    Ma XR; Alugubelli YR; Ma Y; Vatansever EC; Scott DA; Qiao Y; Yu G; Xu S; Liu WR
    ChemMedChem; 2022 Jan; 17(1):e202100456. PubMed ID: 34242492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 M
    Soulère L; Barbier T; Queneau Y
    Comput Biol Chem; 2021 Jun; 92():107463. PubMed ID: 33677227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-
    Shmuel O; Rasti A; Zaknoun M; Astman N; Golan-Goldhirsh A; Sagi O; Gopas J
    Pathogens; 2024 May; 13(5):. PubMed ID: 38787236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhenium(V) Complexes as Cysteine-Targeting Coordinate Covalent Warheads.
    Karges J; Cohen SM
    J Med Chem; 2023 Feb; 66(4):3088-3105. PubMed ID: 36752718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB.
    Schröder J; Noack S; Marhöfer RJ; Mottram JC; Coombs GH; Selzer PM
    PLoS One; 2013; 8(10):e77460. PubMed ID: 24146999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives.
    Nogara PA; Omage FB; Bolzan GR; Delgado CP; Aschner M; Orian L; Teixeira Rocha JB
    Mol Inform; 2021 Aug; 40(8):e2100028. PubMed ID: 34018687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors.
    Huff S; Kummetha IR; Tiwari SK; Huante MB; Clark AE; Wang S; Bray W; Smith D; Carlin AF; Endsley M; Rana TM
    J Med Chem; 2022 Feb; 65(4):2866-2879. PubMed ID: 34570513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L.
    Ashhurst AS; Tang AH; Fajtová P; Yoon MC; Aggarwal A; Bedding MJ; Stoye A; Beretta L; Pwee D; Drelich A; Skinner D; Li L; Meek TD; McKerrow JH; Hook V; Tseng CT; Larance M; Turville S; Gerwick WH; O'Donoghue AJ; Payne RJ
    J Med Chem; 2022 Feb; 65(4):2956-2970. PubMed ID: 34730959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neoechinulin A as a Promising SARS-CoV-2 M
    Alhadrami HA; Burgio G; Thissera B; Orfali R; Jiffri SE; Yaseen M; Sayed AM; Rateb ME
    Mar Drugs; 2022 Feb; 20(3):. PubMed ID: 35323462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M
    Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM
    Life Sci; 2020 Aug; 255():117831. PubMed ID: 32450166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Repurposing for the SARS-CoV-2 Papain-Like Protease.
    Cho CC; Li SG; Lalonde TJ; Yang KS; Yu G; Qiao Y; Xu S; Ray Liu W
    ChemMedChem; 2022 Jan; 17(1):e202100455. PubMed ID: 34423563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization Rules for SARS-CoV-2 M
    Stoddard SV; Stoddard SD; Oelkers BK; Fitts K; Whalum K; Whalum K; Hemphill AD; Manikonda J; Martinez LM; Riley EG; Roof CM; Sarwar N; Thomas DM; Ulmer E; Wallace FE; Pandey P; Roy S
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32859008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors.
    Li D; Luan J; Zhang L
    Biochem Biophys Res Commun; 2021 Jan; 538():72-79. PubMed ID: 33276953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apigenin analogues as SARS-CoV-2 main protease inhibitors:
    Farhat A; Ben Hlima H; Khemakhem B; Ben Halima Y; Michaud P; Abdelkafi S; Fendri I
    Bioengineered; 2022 Feb; 13(2):3350-3361. PubMed ID: 35048792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus.
    Qiao Z; Wei N; Jin L; Zhang H; Luo J; Zhang Y; Wang K
    Bioorg Chem; 2021 Dec; 117():105455. PubMed ID: 34740055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.