BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3444337)

  • 1. An approach to the modeling of the tolerance mechanism in the drug effect. I: The drug effect as a disturbance of regulations.
    Peper A; Grimbergen CA; Kraal JW; Engelbart JH
    J Theor Biol; 1987 Aug; 127(4):413-26. PubMed ID: 3444337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to the modeling of the tolerance mechanism in the drug effect. II: On the implications of compensatory regulation.
    Peper A; Grimbergen CA; Kraal JW; Engelbart JH
    J Theor Biol; 1988 May; 132(1):29-41. PubMed ID: 3193784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittent adaptation. A theory of drug tolerance, dependence and addiction.
    Peper A
    Pharmacopsychiatry; 2009 May; 42 Suppl 1():S129-43. PubMed ID: 19434551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theory of drug tolerance and dependence II: the mathematical model.
    Peper A
    J Theor Biol; 2004 Aug; 229(4):491-500. PubMed ID: 15246786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theory of drug tolerance and dependence I: a conceptual analysis.
    Peper A
    J Theor Biol; 2004 Aug; 229(4):477-90. PubMed ID: 15246785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary results of simulations with an improved mathematical model of drug tolerance.
    Peper A; Grimbergen CA
    J Theor Biol; 1999 Jul; 199(1):119-23. PubMed ID: 10419765
    [No Abstract]   [Full Text] [Related]  

  • 7. Pharmacokinetic-pharmacodynamic modeling of tolerance to the prolactin-secreting effect of chlorprothixene after different modes of drug administration.
    Bagli M; Süverkrüp R; Quadflieg R; Höflich G; Kasper S; Möller HJ; Langer M; Barlage U; Rao ML
    J Pharmacol Exp Ther; 1999 Nov; 291(2):547-54. PubMed ID: 10525070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation.
    van der Steen MC; Jacoby N; Fairhurst MT; Keller PE
    Brain Res; 2015 Nov; 1626():66-87. PubMed ID: 25725379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interchangeability and predictive performance of empirical tolerance models.
    Gårdmark M; Brynne L; Hammarlund-Udenaes M; Karlsson MO
    Clin Pharmacokinet; 1999 Feb; 36(2):145-67. PubMed ID: 10092960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of a cellular pharmacodynamic model exhibiting sharp response sensitivity and tolerance.
    Siegel RA
    J Pharmacokinet Pharmacodyn; 2007 Feb; 34(1):87-101. PubMed ID: 17160695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E-CELL: software environment for whole-cell simulation.
    Tomita M; Hashimoto K; Takahashi K; Shimizu TS; Matsuzaki Y; Miyoshi F; Saito K; Tanida S; Yugi K; Venter JC; Hutchison CA
    Bioinformatics; 1999 Jan; 15(1):72-84. PubMed ID: 10068694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maxsim2 - Real-time interactive simulations for computer-assisted teaching of pharmacokinetics and pharmacodynamics.
    Gabrielsson J; Andersson K; Tobin G; Ingvast-Larsson C; Jirstrand M
    Comput Methods Programs Biomed; 2014 Mar; 113(3):815-29. PubMed ID: 24461798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The organism tolerance to extreme factors: physiological basis, regulation, prediction].
    Ushakov IB; Shtemberg AS
    Usp Fiziol Nauk; 2011; 42(3):26-45. PubMed ID: 21950007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of rate and extent of tolerance of biomarkers: application to nicotinic acid-induced changes in non-esterified fatty acids in rats.
    Ahlström C; Peletier LA; Gabrielsson J
    Eur J Pharm Sci; 2011 Oct; 44(3):250-64. PubMed ID: 21856416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of opioid tolerance -- molecular mechanisms and clinical consequences].
    Freye E; Latasch L
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2003 Jan; 38(1):14-26. PubMed ID: 12522725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a pharmacokineticpharmacodynamic approach using software to optimize the carbapenem antibiotic regimen.
    Ishihara N; Nishimura N; Tamaki H; Karino F; Miura K; Isobe T; Ikawa K; Morikawa N; Naora K
    Int J Clin Pharmacol Ther; 2015 Jun; 53(6):422-9. PubMed ID: 25828635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence.
    Ebenhöh O; Houwaart T; Lokstein H; Schlede S; Tirok K
    Biosystems; 2011 Feb; 103(2):196-204. PubMed ID: 21029763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive bone remodeling around bonded noncemented total hip arthroplasty: a comparison between animal experiments and computer simulation.
    Weinans H; Huiskes R; van Rietbergen B; Sumner DR; Turner TM; Galante JO
    J Orthop Res; 1993 Jul; 11(4):500-13. PubMed ID: 8340823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design.
    Poulin P
    J Pharm Sci; 2015 Jul; 104(7):2359-68. PubMed ID: 25943586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).
    An G
    Math Biosci; 2009 Jan; 217(1):43-52. PubMed ID: 18950646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.