BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34443455)

  • 1.
    Alvarez HM; Hernández MA; Lanfranconi MP; Silva RA; Villalba MS
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Metabolism of Oleaginous
    Alvarez HM; Herrero OM; Silva RA; Hernández MA; Lanfranconi MP; Villalba MS
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31324625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodococcus bacteria as a promising source of oils from olive mill wastes.
    Herrero OM; Villalba MS; Lanfranconi MP; Alvarez HM
    World J Microbiol Biotechnol; 2018 Jul; 34(8):114. PubMed ID: 29992446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues.
    Le RK; Mahan KM; Ragauskas AJ
    Methods Mol Biol; 2019; 1995():103-120. PubMed ID: 31148123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fruit residues as substrates for single-cell oil production by Rhodococcus species: physiology and genomics of carbohydrate catabolism.
    Herrero OM; Alvarez HM
    World J Microbiol Biotechnol; 2024 Jan; 40(2):61. PubMed ID: 38177966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
    Diwan B; Parkhey P; Gupta P
    Folia Microbiol (Praha); 2018 Sep; 63(5):547-568. PubMed ID: 29687420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.
    Wei Z; Zeng G; Kosa M; Huang D; Ragauskas AJ
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1234-46. PubMed ID: 25377250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.
    Herrero OM; Moncalián G; Alvarez HM
    Microbiology (Reading); 2016 Feb; 162(2):384-397. PubMed ID: 26732874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotechnological Potential of
    Kim D; Choi KY; Yoo M; Zylstra GJ; Kim E
    J Microbiol Biotechnol; 2018 Jul; 28(7):1037-1051. PubMed ID: 29913546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms.
    Dourou M; Aggeli D; Papanikolaou S; Aggelis G
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2509-2523. PubMed ID: 29423634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci.
    Hernández MA; Lara J; Gago G; Gramajo H; Alvarez HM
    Mol Microbiol; 2017 Jan; 103(2):366-385. PubMed ID: 27786393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biology and genetics of the genus Rhodococcus.
    Finnerty WR
    Annu Rev Microbiol; 1992; 46():193-218. PubMed ID: 1444254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformations catalyzed by the genus Rhodococcus.
    Warhurst AM; Fewson CA
    Crit Rev Biotechnol; 1994; 14(1):29-73. PubMed ID: 8187203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates.
    Wei Z; Zeng G; Huang F; Kosa M; Sun Q; Meng X; Huang D; Ragauskas AJ
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7369-77. PubMed ID: 26142385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of lignin model compounds with oleaginous Rhodococci.
    Kosa M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):891-900. PubMed ID: 22159607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms.
    Kothri M; Mavrommati M; Elazzazy AM; Baeshen MN; Moussa TAA; Aggelis G
    FEMS Microbiol Lett; 2020 Mar; 367(5):. PubMed ID: 32053204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oleaginous yeasts for biodiesel: current and future trends in biology and production.
    Sitepu IR; Garay LA; Sestric R; Levin D; Block DE; German JB; Boundy-Mills KL
    Biotechnol Adv; 2014 Nov; 32(7):1336-1360. PubMed ID: 25172033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production.
    Xiong X; Lian J; Yu X; Garcia-Perez M; Chen S
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1551-1560. PubMed ID: 27558782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel production by various oleaginous microorganisms from organic wastes.
    Cho HU; Park JM
    Bioresour Technol; 2018 May; 256():502-508. PubMed ID: 29478783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.