These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 34443455)

  • 21. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.
    Röttig A; Hauschild P; Madkour MH; Al-Ansari AM; Almakishah NH; Steinbüchel A
    J Biotechnol; 2016 May; 225():48-56. PubMed ID: 27034020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus.
    Ceniceros A; Dijkhuizen L; Petrusma M; Medema MH
    BMC Genomics; 2017 Aug; 18(1):593. PubMed ID: 28793878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.
    Hernández MA; Comba S; Arabolaza A; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2191-207. PubMed ID: 25213912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial lipids from organic wastes: Outlook and challenges.
    Tomás-Pejó E; Morales-Palomo S; González-Fernández C
    Bioresour Technol; 2021 Mar; 323():124612. PubMed ID: 33418352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing lipid production using an NADP
    Hernández MA; Alvarez HM
    Microbiology (Reading); 2019 Jan; 165(1):4-14. PubMed ID: 30372408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycogenformation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630.
    Hernández MA; Alvarez HM
    FEMS Microbiol Lett; 2010 Nov; 312(1):93-9. PubMed ID: 21069909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium.
    Santisi S; Cappello S; Catalfamo M; Mancini G; Hassanshahian M; Genovese L; Giuliano L; Yakimov MM
    Braz J Microbiol; 2015 Jun; 46(2):377-87. PubMed ID: 26273252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Producing Oleaginous Organisms Using Food Waste: Challenges and Outcomes.
    Jayanthi S; Thalla AK
    Methods Mol Biol; 2019; 1995():369-381. PubMed ID: 31148139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Fatty Acyl Coenzyme A Reductase Promotes Wax Ester Accumulation in Rhodococcus jostii RHA1.
    Round J; Roccor R; Li SN; Eltis LD
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation.
    Llamas M; Magdalena JA; González-Fernández C; Tomás-Pejó E
    Biotechnol Bioeng; 2020 Jan; 117(1):238-250. PubMed ID: 31544974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium.
    Bequer Urbano S; Albarracín VH; Ordoñez OF; Farías ME; Alvarez HM
    Extremophiles; 2013 Mar; 17(2):217-27. PubMed ID: 23283521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review.
    Patel A; Sarkar O; Rova U; Christakopoulos P; Matsakas L
    Bioresour Technol; 2021 Feb; 321():124457. PubMed ID: 33316701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media.
    Van Hong Thi Pham ; Chaudhary DK; Jeong SW; Kim J
    World J Microbiol Biotechnol; 2018 Feb; 34(2):33. PubMed ID: 29411146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil.
    Patel A; Matsakas L
    Ultrason Sonochem; 2019 Apr; 52():364-374. PubMed ID: 30559080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Adsorptive immobilization of rhodococcal cells in hydrophobized derivatives of wide-pore polyacrylamide cryogel].
    Kuyukina MS; Ivshina IB; Rubtsova EV; Ivanov RV; Lozinskiĭ VI
    Prikl Biokhim Mikrobiol; 2011; 47(2):176-82. PubMed ID: 22808741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New biofuel alternatives: integrating waste management and single cell oil production.
    Martínez EJ; Raghavan V; González-Andrés F; Gómez X
    Int J Mol Sci; 2015 Apr; 16(5):9385-405. PubMed ID: 25918941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-production of single cell oil and gluconic acid using oleaginous
    Qian X; Gorte O; Chen L; Zhang W; Dong W; Ma J; Jiang M; Xin F; Ochsenreither K
    Biotechnol Biofuels; 2019; 12():127. PubMed ID: 31139257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial abundance and community composition influence production performance in a low-temperature petroleum reservoir.
    Li G; Gao P; Wu Y; Tian H; Dai X; Wang Y; Cui Q; Zhang H; Pan X; Dong H; Ma T
    Environ Sci Technol; 2014 May; 48(9):5336-44. PubMed ID: 24730445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.