These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34443503)

  • 1. Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel.
    Tamura S; Jasial S; Miyao T; Funatsu K
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-based Activity Cliff Prediction Models with Applicability Domain.
    Tamura S; Miyao T; Funatsu K
    Mol Inform; 2020 Dec; 39(12):e2000103. PubMed ID: 32830451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.
    Horvath D; Marcou G; Varnek A; Kayastha S; de la Vega de León A; Bajorath J
    J Chem Inf Model; 2016 Sep; 56(9):1631-40. PubMed ID: 27564682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of activity cliffs on the basis of images using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2021 Dec; 35(12):1157-1164. PubMed ID: 33740200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation.
    Feldmann C; Bajorath J
    iScience; 2022 Sep; 25(9):105023. PubMed ID: 36105596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2020 Oct; 34(10):1013-1026. PubMed ID: 32361862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs.
    Hu X; Hu Y; Vogt M; Stumpfe D; Bajorath J
    J Chem Inf Model; 2012 May; 52(5):1138-45. PubMed ID: 22489665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of activity cliffs using support vector machines.
    Heikamp K; Hu X; Yan A; Bajorath J
    J Chem Inf Model; 2012 Sep; 52(9):2354-65. PubMed ID: 22894655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values.
    Rodríguez-Pérez R; Bajorath J
    J Med Chem; 2020 Aug; 63(16):8761-8777. PubMed ID: 31512867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity.
    Tamura S; Miyao T; Bajorath J
    J Cheminform; 2023 Jan; 15(1):4. PubMed ID: 36611204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Activity Cliffs from a Chemoinformatics Perspective.
    Bajorath J
    Mol Inform; 2014 Jun; 33(6-7):438-42. PubMed ID: 27485979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Explainable Artificial Intelligence Framework for the Deterioration Risk Prediction of Hepatitis Patients.
    Peng J; Zou K; Zhou M; Teng Y; Zhu X; Zhang F; Xu J
    J Med Syst; 2021 Apr; 45(5):61. PubMed ID: 33847850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An artificial neural network-pharmacokinetic model and its interpretation using Shapley additive explanations.
    Ogami C; Tsuji Y; Seki H; Kawano H; To H; Matsumoto Y; Hosono H
    CPT Pharmacometrics Syst Pharmacol; 2021 Jul; 10(7):760-768. PubMed ID: 33955705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction.
    Rodríguez-Pérez R; Vogt M; Bajorath J
    ACS Omega; 2017 Oct; 2(10):6371-6379. PubMed ID: 30023518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of compound potency changes in matched molecular pairs using support vector regression.
    de la Vega de León A; Bajorath J
    J Chem Inf Model; 2014 Oct; 54(10):2654-63. PubMed ID: 25191787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in exploring activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    J Comput Aided Mol Des; 2020 Sep; 34(9):929-942. PubMed ID: 32367387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White box radial basis function classifiers with component selection for clinical prediction models.
    Van Belle V; Lisboa P
    Artif Intell Med; 2014 Jan; 60(1):53-64. PubMed ID: 24262978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring QSAR models for activity-cliff prediction.
    Dablander M; Hanser T; Lambiotte R; Morris GM
    J Cheminform; 2023 Apr; 15(1):47. PubMed ID: 37069675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Explainability in Breast Cancer Survival.
    Jansen T; Geleijnse G; Van Maaren M; Hendriks MP; Ten Teije A; Moncada-Torres A
    Stud Health Technol Inform; 2020 Jun; 270():307-311. PubMed ID: 32570396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplified activity cliff network representations with high interpretability and immediate access to SAR information.
    Hu H; Bajorath J
    J Comput Aided Mol Des; 2020 Sep; 34(9):943-952. PubMed ID: 32500478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.