BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34443538)

  • 1. How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing.
    Ranieri A; Borsari M; Casalini S; Di Rocco G; Sola M; Bortolotti CA; Battistuzzi G
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures.
    Schuhmann W
    J Biotechnol; 2002 Feb; 82(4):425-41. PubMed ID: 11996220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-transfer mechanisms in amperometric biosensors.
    Habermüller K; Mosbach M; Schuhmann W
    Fresenius J Anal Chem; 2000; 366(6-7):560-8. PubMed ID: 11225768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small electron-transfer proteins as mediators in enzymatic electrochemical biosensors.
    Silveira CM; Almeida MG
    Anal Bioanal Chem; 2013 Apr; 405(11):3619-35. PubMed ID: 23430181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyazetidine-based immobilization of redox proteins for electron-transfer-based biosensors.
    Frasconi M; Favero G; Di Fusco M; Mazzei F
    Biosens Bioelectron; 2009 Jan; 24(5):1424-30. PubMed ID: 18829298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrocatalysis at carbon nanotubes.
    Bollella P; Katz E
    Methods Enzymol; 2020; 630():215-247. PubMed ID: 31931987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-transfer pathways between redox enzymes and electrode surfaces: reagentless biosensors based on thiol-monolayer-bound and polypyrrole-entrapped enzymes.
    Schuhmann W; Zimmermann H; Habermüller K; Laurinavicius V
    Faraday Discuss; 2000; (116):245-55; discussion 257-68. PubMed ID: 11197483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and redox properties of cytochrome c552 from Thermus thermophilus adsorbed on different self-assembled thiol monolayers, used to model the chemical environment of the redox partner.
    Bernad S; Soulimane T; Mehkalif Z; Lecomte S
    Biopolymers; 2006 Apr; 81(5):407-18. PubMed ID: 16365847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.
    Nöll T; Nöll G
    Chem Soc Rev; 2011 Jul; 40(7):3564-76. PubMed ID: 21509355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer.
    Lee YS; Baek S; Lee H; Reginald SS; Kim Y; Kang H; Choi IG; Chang IS
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28615-28626. PubMed ID: 30067023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers.
    de Groot MT; Evers TH; Merkx M; Koper MT
    Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein electrodes with direct electrochemical communication.
    Wollenberger U; Spricigo R; Leimkühler S; Schröder K
    Adv Biochem Eng Biotechnol; 2008; 109():19-64. PubMed ID: 17928972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport.
    Sucheta A; Cammack R; Weiner J; Armstrong FA
    Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization.
    Todorovic S; Jung C; Hildebrandt P; Murgida DH
    J Biol Inorg Chem; 2006 Jan; 11(1):119-27. PubMed ID: 16328458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).
    Monari S; Battistuzzi G; Borsari M; Di Rocco G; Martini L; Ranieri A; Sola M
    J Phys Chem B; 2009 Oct; 113(41):13645-53. PubMed ID: 19764800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical current rectification at bio-functionalized electrodes.
    Liu Y; Offenhäusser A; Mayer D
    Bioelectrochemistry; 2010 Feb; 77(2):89-93. PubMed ID: 19631593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry of cytochrome c immobilized on gold electrode surface via Zr(IV) ion glue and its activity for ascorbic acid.
    Shervedani RK; Foroushani MS
    Bioelectrochemistry; 2014 Aug; 98():53-63. PubMed ID: 24686004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical behaviour of cytochrome c at electrically heated microelectrodes.
    Voss T; Gründler P; Brett CM; Brett AM
    J Pharm Biomed Anal; 1999 Feb; 19(1-2):127-33. PubMed ID: 10698574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered proteins: redox properties and their applications.
    Prabhulkar S; Tian H; Wang X; Zhu JJ; Li CZ
    Antioxid Redox Signal; 2012 Dec; 17(12):1796-822. PubMed ID: 22435347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.