These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 34443695)
1. Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling. Summerson V; Gonzalez Viejo C; Pang A; Torrico DD; Fuentes S Molecules; 2021 Aug; 26(16):. PubMed ID: 34443695 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Smoke Contamination in Grapevine Berries and Taint in Wines Due to Bushfires Using a Low-Cost E-Nose and an Artificial Intelligence Approach. Fuentes S; Summerson V; Gonzalez Viejo C; Tongson E; Lipovetzky N; Wilkinson KL; Szeto C; Unnithan RR Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911709 [TBL] [Abstract][Full Text] [Related]
3. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Petronilho S; Lopez R; Ferreira V; Coimbra MA; Rocha SM Molecules; 2020 Jan; 25(2):. PubMed ID: 31936556 [TBL] [Abstract][Full Text] [Related]
4. Uptake and Glycosylation of Smoke-Derived Volatile Phenols by Cabernet Sauvignon Grapes and Their Subsequent Fate during Winemaking. Szeto C; Ristic R; Capone D; Puglisi C; Pagay V; Culbert J; Jiang W; Herderich M; Tuke J; Wilkinson K Molecules; 2020 Aug; 25(16):. PubMed ID: 32824099 [TBL] [Abstract][Full Text] [Related]
5. Analytical characterisation of Negroamaro red wines by "Aroma Wheels". Capone S; Tufariello M; Siciliano P Food Chem; 2013 Dec; 141(3):2906-15. PubMed ID: 23871040 [TBL] [Abstract][Full Text] [Related]
6. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model. Kang BS; Lee JE; Park HJ J Food Sci; 2014 Jun; 79(6):C1106-16. PubMed ID: 24888253 [TBL] [Abstract][Full Text] [Related]
7. Water stress and ripeness effects on the volatile composition of Cabernet Sauvignon wines. Talaverano I; Ubeda C; Cáceres-Mella A; Valdés ME; Pastenes C; Peña-Neira Á J Sci Food Agric; 2018 Feb; 98(3):1140-1152. PubMed ID: 28758679 [TBL] [Abstract][Full Text] [Related]
8. Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of Liu PT; Duan CQ; Yan GL Molecules; 2019 Feb; 24(3):. PubMed ID: 30717212 [TBL] [Abstract][Full Text] [Related]
9. Influence of yeast strain, canopy management, and site on the volatile composition and sensory attributes of cabernet sauvignon wines from Western Australia. Robinson AL; Boss PK; Heymann H; Solomon PS; Trengove RD J Agric Food Chem; 2011 Apr; 59(7):3273-84. PubMed ID: 21370883 [TBL] [Abstract][Full Text] [Related]
10. Harvesting at the Right Time: Maturity and Its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Zhao T; Wu J; Meng J; Shi P; Fang Y; Zhang Z; Sun X Molecules; 2019 Jul; 24(15):. PubMed ID: 31366183 [TBL] [Abstract][Full Text] [Related]
11. Volatile compounds of young wines from cabernet sauvignon, cabernet gernischet and chardonnay varieties grown in the loess plateau region of china. Jiang B; Zhang Z Molecules; 2010 Dec; 15(12):9184-96. PubMed ID: 21150828 [TBL] [Abstract][Full Text] [Related]
12. Volatile aroma compounds in wines from Chinese wild/hybrid species. Wei Z; Liu X; Huang Y; Lu J; Zhang Y J Food Biochem; 2019 Oct; 43(10):e12684. PubMed ID: 31608471 [TBL] [Abstract][Full Text] [Related]
13. The aroma of La Mancha Chelva wines: Chemical and sensory characterization. Sánchez-Palomo E; Delgado JA; Ferrer MA; Viñas MAG Food Res Int; 2019 May; 119():135-142. PubMed ID: 30884641 [TBL] [Abstract][Full Text] [Related]
14. Screening of key odorants and anthocyanin compounds of cv. Okuzgozu (Vitis vinifera L.) red wines with a free run and pressed pomace using GC-MS-Olfactometry and LC-MS-MS. Tetik MA; Sevindik O; Kelebek H; Selli S J Mass Spectrom; 2018 May; 53(5):444-454. PubMed ID: 29469168 [TBL] [Abstract][Full Text] [Related]
15. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. Canuti V; Conversano M; Calzi ML; Heymann H; Matthews MA; Ebeler SE J Chromatogr A; 2009 Apr; 1216(15):3012-22. PubMed ID: 19233370 [TBL] [Abstract][Full Text] [Related]
16. Effect of maceration time on free and bound volatiles of red wines from cv. Karaoğlan (Vitis vinifera L.) grapes grown in Arapgir, Turkey. Yilmaztekin M; Kocabey N; Hayaloglu AA J Food Sci; 2015 Mar; 80(3):C556-63. PubMed ID: 25677953 [TBL] [Abstract][Full Text] [Related]
17. Characterization of key odor-active compounds in sweet Petit Manseng (Vitis vinifera L.) wine by gas chromatography-olfactometry, aroma reconstitution, and omission tests. Lan Y; Guo J; Qian X; Zhu B; Shi Y; Wu G; Duan C J Food Sci; 2021 Apr; 86(4):1258-1272. PubMed ID: 33733488 [TBL] [Abstract][Full Text] [Related]
18. Aromatic Characterization of New White Wine Varieties Made from Monastrell Grapes Grown in South-Eastern Spain. Moreno-Olivares JD; Giménez-Bañón MJ; Paladines-Quezada DF; Gómez-Martínez JC; Cebrián-Pérez A; Fernández-Fernández JI; Bleda-Sánchez JA; Gil-Muñoz R Molecules; 2020 Aug; 25(17):. PubMed ID: 32867325 [TBL] [Abstract][Full Text] [Related]
19. Chemical and Sensory Characterization of Cabernet Sauvignon Wines from the Chinese Loess Plateau Region. Tang K; Xi YR; Ma Y; Zhang HN; Xu Y Molecules; 2019 Mar; 24(6):. PubMed ID: 30901866 [TBL] [Abstract][Full Text] [Related]
20. Sensory descriptive and comprehensive GC-MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part I: BRS Carmem and BRS Violeta. de Castilhos MBM; Del Bianchi VL; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I Food Chem; 2019 Jan; 272():462-470. PubMed ID: 30309569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]