These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34443718)

  • 21. Dissipation in a simple model of a topological Josephson junction.
    Matthews P; Ribeiro P; García-García AM
    Phys Rev Lett; 2014 Jun; 112(24):247001. PubMed ID: 24996102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superfluid density and phase relaxation in superconductors with strong disorder.
    Seibold G; Benfatto L; Castellani C; Lorenzana J
    Phys Rev Lett; 2012 May; 108(20):207004. PubMed ID: 23003178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluctuating superconductivity in organic molecular metals close to the Mott transition.
    Nam MS; Ardavan A; Blundell SJ; Schlueter JA
    Nature; 2007 Oct; 449(7162):584-7. PubMed ID: 17914392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Anderson-Josephson quantum dot-a theory perspective.
    Meden V
    J Phys Condens Matter; 2019 Apr; 31(16):163001. PubMed ID: 30630142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase fluctuations in conventional superconductors.
    Raychaudhuri P; Dutta S
    J Phys Condens Matter; 2021 Dec; 34(8):. PubMed ID: 34731851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films.
    Breznay NP; Kapitulnik A
    Sci Adv; 2017 Sep; 3(9):e1700612. PubMed ID: 28929135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type-III Superconductivity.
    Diamantini MC; Trugenberger CA; Chen SZ; Lu YJ; Liang CT; Vinokur VM
    Adv Sci (Weinh); 2023 May; 10(14):e2206523. PubMed ID: 36965030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure-induced enhancement of the superconducting transition temperature in La
    Paredes Aulestia EI; Liu X; Pang YY; So CW; Yu WC; Goh SK; Lai KT
    J Phys Condens Matter; 2021 Nov; 34(6):. PubMed ID: 34715684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave-stimulated superconductivity due to presence of vortices.
    Lara A; Aliev FG; Silhanek AV; Moshchalkov VV
    Sci Rep; 2015 Mar; 5():9187. PubMed ID: 25778446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nature of the superconductor-insulator transition in disordered superconductors.
    Dubi Y; Meir Y; Avishai Y
    Nature; 2007 Oct; 449(7164):876-80. PubMed ID: 17943125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum phase transitions in two-dimensional superconductors: a review on recent experimental progress.
    Wang Z; Liu Y; Ji C; Wang J
    Rep Prog Phys; 2023 Dec; 87(1):. PubMed ID: 38086096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin manipulation in nanoscale superconductors.
    Beckmann D
    J Phys Condens Matter; 2016 Apr; 28(16):163001. PubMed ID: 27001949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metallic ground state in an ion-gated two-dimensional superconductor.
    Saito Y; Kasahara Y; Ye J; Iwasa Y; Nojima T
    Science; 2015 Oct; 350(6259):409-13. PubMed ID: 26429881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Restoring Superconductivity in the Quantum Metal Phase of NbSe
    Banerjee A; Mohapatra A; Ganesan R; Kumar PSA
    Nano Lett; 2019 Mar; 19(3):1625-1631. PubMed ID: 30735619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Percolative theories of strongly disordered ceramic high-temperature superconductors.
    Phillips JC
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1307-10. PubMed ID: 20080578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for Dirac flat band superconductivity enabled by quantum geometry.
    Tian H; Gao X; Zhang Y; Che S; Xu T; Cheung P; Watanabe K; Taniguchi T; Randeria M; Zhang F; Lau CN; Bockrath MW
    Nature; 2023 Feb; 614(7948):440-444. PubMed ID: 36792742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A strongly inhomogeneous superfluid in an iron-based superconductor.
    Cho D; Bastiaans KM; Chatzopoulos D; Gu GD; Allan MP
    Nature; 2019 Jul; 571(7766):541-545. PubMed ID: 31341304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical control of the superconducting-to-insulating transition in graphene-metal hybrids.
    Allain A; Han Z; Bouchiat V
    Nat Mater; 2012 May; 11(7):590-4. PubMed ID: 22609559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillating rows of vortices in superconductors.
    Matsuda T; Kamimura O; Kasai H; Harada K; Yoshida T; Akashi T; Tonomura A; Nakayama Y; Shimoyama J; Kishio K; Hanaguri T; Kitazawa K
    Science; 2001 Dec; 294(5549):2136-8. PubMed ID: 11739950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip.
    Ge JY; Gladilin VN; Tempere J; Xue C; Devreese JT; Van de Vondel J; Zhou Y; Moshchalkov VV
    Nat Commun; 2016 Dec; 7():13880. PubMed ID: 27934960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.