These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34443758)
1. Optical-Thermally Excited Graphene Resonant Mass Detection: A Molecular Dynamics Analysis. Xiao X; Fan SC; Li C; Liu YJ Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443758 [TBL] [Abstract][Full Text] [Related]
2. Stress-Insensitive Resonant Graphene Mass Sensing via Frequency Ratio. Xiao X; Fan SC; Li C; Xing WW Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324044 [TBL] [Abstract][Full Text] [Related]
3. Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane. Shi FT; Fan SC; Li C; Li ZA Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30959952 [TBL] [Abstract][Full Text] [Related]
4. The Effect of Edge Mode on Mass Sensing for Strained Graphene Resonators. Xiao X; Fan SC; Li C Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673380 [TBL] [Abstract][Full Text] [Related]
5. High-sensitivity fiber optic graphene resonant accelerometer. Liu Y; Li C; Li J; Wan Z; Fan S Opt Lett; 2024 Apr; 49(7):1790-1793. PubMed ID: 38560864 [TBL] [Abstract][Full Text] [Related]
6. Active Radiative Thermal Switching with Graphene Plasmon Resonators. Ilic O; Thomas NH; Christensen T; Sherrott MC; Soljačić M; Minnich AJ; Miller OD; Atwater HA ACS Nano; 2018 Mar; 12(3):2474-2481. PubMed ID: 29529374 [TBL] [Abstract][Full Text] [Related]
7. A fast and sensitive room-temperature graphene nanomechanical bolometer. Blaikie A; Miller D; Alemán BJ Nat Commun; 2019 Oct; 10(1):4726. PubMed ID: 31624243 [TBL] [Abstract][Full Text] [Related]
8. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing. Liu S; Xiao H; Chen Y; Chen P; Yan W; Lin Q; Liu B; Xu X; Wang Y; Weng X; Liu L; Qu J Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501770 [TBL] [Abstract][Full Text] [Related]
9. Research Progress of Graphene Nano-Electromechanical Resonant Sensors-A Review. Fan SC; Lu Y; Zhao PC; Shi FT; Guo ZS; Xing WW Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208365 [TBL] [Abstract][Full Text] [Related]
10. The Effect of Annealing and Optical Radiation Treatment on Graphene Resonators. Liu Y; Li C; Fan S; Song X; Wan Z Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957156 [TBL] [Abstract][Full Text] [Related]
11. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism. Jiang JW; Park HS; Rabczuk T Nanotechnology; 2012 Nov; 23(47):475501. PubMed ID: 23117225 [TBL] [Abstract][Full Text] [Related]
12. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface. Li Q; Cong L; Singh R; Xu N; Cao W; Zhang X; Tian Z; Du L; Han J; Zhang W Nanoscale; 2016 Oct; 8(39):17278-17284. PubMed ID: 27714077 [TBL] [Abstract][Full Text] [Related]
13. A Closed Cavity Ultrasonic Resonator Formed by Graphene/PMMA Membrane for Acoustic Application. Xu J; Wood GS; Mastropaolo E; Lomax P; Newton M; Cheung R Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421043 [TBL] [Abstract][Full Text] [Related]
14. An Ultrahigh-Sensitivity Graphene Resonant Gyroscope. Lu Y; Guo ZS; Fan SC Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443720 [TBL] [Abstract][Full Text] [Related]
15. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air. Li C; Lan T; Yu X; Bo N; Dong J; Fan S Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113035 [TBL] [Abstract][Full Text] [Related]
16. Actuation of a suspended nano-graphene sheet by impact with an argon cluster. Inui N; Mochiji K; Moritani K Nanotechnology; 2008 Dec; 19(50):505501. PubMed ID: 19942769 [TBL] [Abstract][Full Text] [Related]
17. MoS2 nanoresonators: intrinsically better than graphene? Jiang JW; Park HS; Rabczuk T Nanoscale; 2014 Apr; 6(7):3618-25. PubMed ID: 24556934 [TBL] [Abstract][Full Text] [Related]