These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34443760)

  • 1. Propane Steam Reforming over Catalysts Derived from Noble Metal (Ru, Rh)-Substituted LaNiO
    Ramantani T; Bampos G; Vavatsikos A; Vatskalis G; Kondarides DI
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite Structured M/Ce
    Ruban N; Rogozhnikov V; Zazhigalov S; Zagoruiko A; Emelyanov V; Snytnikov P; Sobyanin V; Potemkin D
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified Nano-Perovskite Catalysts for the Steam and CO2 Reforming of Methane.
    Park D; Moon DJ; Bae JW; Kim T
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5889-92. PubMed ID: 26369166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Support Effects on the Activity of Ni Catalysts for the Propane Steam Reforming Reaction.
    Kokka A; Petala A; Panagiotopoulou P
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autothermal reforming of propane over Ni-based hydrotalcite catalysts.
    Park SY; Kim JH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2010 May; 10(5):3175-9. PubMed ID: 20358916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and Performance Validation of Nano-Perovskite Type for Carbon Dioxide Reforming of Methane.
    Kim T; Park D
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1259-1262. PubMed ID: 29448569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Observation of Rhodium Ex-Solution from a Ceria Nanodomain and Its Use for Hydrogen Production via Propane Steam Reforming.
    Kim M; Kwon G; Jung WG; Choi Y; Kim BJ; Lee H
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48508-48515. PubMed ID: 34612622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steam Reforming of Glycerol Over Nano Size Ni-Ce/LaAlO3 Catalysts.
    Kim SH; Go YJ; Park NC; Kim JH; Kim YC; Moon DJ
    J Nanosci Nanotechnol; 2015 Jan; 15(1):522-6. PubMed ID: 26328394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term evaluation of palm oil mill effluent (POME) steam reforming over lanthanum-based perovskite oxides.
    Cheng YW; Chong CC; Cheng CK; Wang CH; Ng KH; Witoon T; Lam MK; Lim JW
    J Environ Manage; 2024 Feb; 351():119919. PubMed ID: 38157572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane.
    Christian MM; Kenis PJ
    Lab Chip; 2006 Oct; 6(10):1328-37. PubMed ID: 17111577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Fe in Perovskite Catalysts for Steam CO2 Reforming of Methane.
    Yang EH; Noh YS; Lim SS; Ahn BS; Moon DJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1938-41. PubMed ID: 27433705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic Ni-Ru and Ni-Re Catalysts for Dry Reforming of Methane: Understanding the Synergies of the Selected Promoters.
    Álvarez Moreno A; Ramirez-Reina T; Ivanova S; Roger AC; Centeno MÁ; Odriozola JA
    Front Chem; 2021; 9():694976. PubMed ID: 34307298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.
    Park NK; Jeong YH; Kang M; Lee TJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6385-6392. PubMed ID: 29677801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autothermal reforming of propane over Ni catalysts supported on a variety of perovskites.
    Lim S; Moon D; Kim J; Kim Y; Park N; Shin J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4013-6. PubMed ID: 18047107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-Rich Gas Production by Steam Reforming and Oxidative Steam Reforming of Methanol over La
    Morales M; Laguna-Bercero MÁ; Jiménez-Piqué E
    ACS Appl Energy Mater; 2023 Aug; 6(15):7887-7898. PubMed ID: 37592929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel-Doped La0.8Sr0.2Mn(1-x)Ni(x)O3 Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium-Air Batteries.
    Wang Z; You Y; Yuan J; Yin YX; Li YT; Xin S; Zhang D
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6520-8. PubMed ID: 26900959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO
    Yu L; Sato K; Toriyama T; Yamamoto T; Matsumura S; Nagaoka K
    Chemistry; 2018 Jun; 24(35):8742-8746. PubMed ID: 29717523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts.
    Mortazavi-Manesh A; Safari N; Bahadoran F; Khani Y
    Heliyon; 2023 Mar; 9(3):e13742. PubMed ID: 36873539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autothermal reforming of propane on Ni-supported perovskite, hydrotalcite, and metal oxide catalysts.
    Park N; Kim W; Moon D; Seo G; Kim Y
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1676-9. PubMed ID: 21456265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Preparation Conditions on the Performance of Ni-Based Catalysts for Glycerol Steam Reforming.
    Xie S; Zhang X; Tu Q; Shi B; Cui Y; Chen C
    ACS Omega; 2018 Oct; 3(10):13335-13342. PubMed ID: 31458048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.