These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 34443779)
1. Clustering of Diamond Nanoparticles, Fluorination and Efficiency of Slow Neutron Reflectors. Aleksenskii A; Bleuel M; Bosak A; Chumakova A; Dideikin A; Dubois M; Korobkina E; Lychagin E; Muzychka A; Nekhaev G; Nesvizhevsky V; Nezvanov A; Schweins R; Shvidchenko A; Strelkov A; Turlybekuly K; Vul' A; Zhernenkov K Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443779 [TBL] [Abstract][Full Text] [Related]
2. Effect of Particle Sizes on the Efficiency of Fluorinated Nanodiamond Neutron Reflectors. Aleksenskii A; Bleuel M; Bosak A; Chumakova A; Dideikin A; Dubois M; Korobkina E; Lychagin E; Muzychka A; Nekhaev G; Nesvizhevsky V; Nezvanov A; Schweins R; Shvidchenko A; Strelkov A; Turlybekuly K; Vul' A; Zhernenkov K Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835831 [TBL] [Abstract][Full Text] [Related]
3. Fluorination of Diamond Nanoparticles in Slow Neutron Reflectors Does Not Destroy Their Crystalline Cores and Clustering While Decreasing Neutron Losses. Bosak A; Dideikin A; Dubois M; Ivankov O; Lychagin E; Muzychka A; Nekhaev G; Nesvizhevsky V; Nezvanov A; Schweins R; Strelkov A; Vul' A; Zhernenkov K Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32727005 [TBL] [Abstract][Full Text] [Related]
4. Effect of Nanodiamond Sizes on the Efficiency of the Quasi-Specular Reflection of Cold Neutrons. Bosak A; Dubois M; Korobkina E; Lychagin E; Muzychka A; Nekhaev G; Nesvizhevsky V; Nezvanov A; Saerbeck T; Schweins R; Strelkov A; Turlybekuly K; Zhernenkov K Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676440 [TBL] [Abstract][Full Text] [Related]
5. Enhanced directional extraction of very cold neutrons using a diamond nanoparticle powder reflector. Chernyavsky SM; Dubois M; Korobkina E; Lychagin EV; Muzychka AY; Nekhaev GV; Nesvizhevsky VV; Nezvanov AY; Strelkov AV; Zhernenkov KN Rev Sci Instrum; 2022 Dec; 93(12):123302. PubMed ID: 36586889 [TBL] [Abstract][Full Text] [Related]
6. Powders of Diamond Nanoparticles as a Promising Material for Reflectors of Very Cold and Cold Neutrons. Lychagin E; Dubois M; Nesvizhevsky V Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392760 [TBL] [Abstract][Full Text] [Related]
7. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Peng W; Mahfouz R; Pan J; Hou Y; Beaujuge PM; Bakr OM Nanoscale; 2013 Jun; 5(11):5017-26. PubMed ID: 23636671 [TBL] [Abstract][Full Text] [Related]
8. Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds. Reineck P; Lau DWM; Wilson ER; Fox K; Field MR; Deeleepojananan C; Mochalin VN; Gibson BC ACS Nano; 2017 Nov; 11(11):10924-10934. PubMed ID: 29088544 [TBL] [Abstract][Full Text] [Related]
9. The spatial diamond-graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering. Avdeev MV; Aksenov VL; Tomchuk OV; Bulavin LA; Garamus VM; Osawa E J Phys Condens Matter; 2013 Nov; 25(44):445001. PubMed ID: 24055978 [TBL] [Abstract][Full Text] [Related]
10. The effect of salt and particle concentration on the dynamic self-assembly of detonation nanodiamonds in water. El-Demrdash SA; Nixon-Luke R; Thomsen L; Tadich A; Lau DWM; Chang SLY; Greaves TL; Bryant G; Reineck P Nanoscale; 2021 Sep; 13(33):14110-14118. PubMed ID: 34477692 [TBL] [Abstract][Full Text] [Related]
11. New Material Exploration to Enhance Neutron Intensity below Cold Neutrons: Nanosized Graphene Flower Aggregation. Teshigawara M; Ikeda Y; Yan M; Muramatsu K; Sutani K; Fukuzumi M; Noda Y; Koizumi S; Saruta K; Otake Y Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615985 [TBL] [Abstract][Full Text] [Related]
12. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Stehlik S; Varga M; Ledinsky M; Miliaieva D; Kozak H; Skakalova V; Mangler C; Pennycook TJ; Meyer JC; Kromka A; Rezek B Sci Rep; 2016 Dec; 6():38419. PubMed ID: 27910924 [TBL] [Abstract][Full Text] [Related]
13. Detonation nanodiamonds are promising nontoxic delivery system for urothelial cells. Zupančič D; Kreft ME; Grdadolnik M; Mitev D; Iglič A; Veranič P Protoplasma; 2018 Jan; 255(1):419-423. PubMed ID: 28741141 [TBL] [Abstract][Full Text] [Related]
14. Complex Dispersion of Detonation Nanodiamond Revealed by Machine Learning Assisted Cryo-TEM and Coarse-Grained Molecular Dynamics Simulations. Kuschnerus IC; Wen H; Ruan J; Zeng X; Su CJ; Jeng US; Opletal G; Barnard AS; Liu M; Nishikawa M; Chang SLY ACS Nanosci Au; 2023 Jun; 3(3):211-221. PubMed ID: 37360847 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator. Shan Q; Chu S; Jia W Appl Radiat Isot; 2015 Nov; 105():204-208. PubMed ID: 26325583 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers. Song Y; Conner J; Zhang X; Hayward JP Appl Radiat Isot; 2016 Feb; 108():100-107. PubMed ID: 26708515 [TBL] [Abstract][Full Text] [Related]
17. Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders. Korobov MV; Volkov DS; Avramenko NV; Belyaeva LA; Semenyuk PI; Proskurnin MA Nanoscale; 2013 Feb; 5(4):1529-36. PubMed ID: 23314800 [TBL] [Abstract][Full Text] [Related]
19. The Lee DK; Ha S; Jeon S; Jeong J; Kim DJ; Lee SW; Cho WS Nanotoxicology; 2020 Nov; 14(9):1213-1226. PubMed ID: 32924690 [TBL] [Abstract][Full Text] [Related]