These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34443816)

  • 1. CVD-Grown Monolayer Graphene-Based Geometric Diode for THz Rectennas.
    Wang H; Jayaswal G; Deokar G; Stearns J; Costa PMFJ; Moddel G; Shamim A
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of Z-Shaped Graphene Geometric Diodes Using Particle-in-Cell Monte Carlo Method in the Quasi-Ballistic Regime.
    Stearns J; Moddel G
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance metal-insulator-graphene diodes for radio frequency power detection application.
    Shaygan M; Wang Z; Elsayed MS; Otto M; Iannaccone G; Ghareeb AH; Fiori G; Negra R; Neumaier D
    Nanoscale; 2017 Aug; 9(33):11944-11950. PubMed ID: 28792041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxides for Rectenna Technology.
    Mitrovic IZ; Almalki S; Tekin SB; Sedghi N; Chalker PR; Hall S
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of ZnO Langmuir-Blodgett Film and Its Use in Metal-Insulator-Metal Tunnel Diode.
    Azad I; Ram MK; Goswami DY; Stefanakos E
    Langmuir; 2016 Aug; 32(33):8307-14. PubMed ID: 27464073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Simulation of Tunneling Diodes with 2D Insulators for Rectenna Switches.
    Li E; Raju P; Zhao E
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-current density and high-asymmetry MIIM diode based on oxygen-non-stoichiometry controlled homointerface structure for optical rectenna.
    Matsuura D; Shimizu M; Yugami H
    Sci Rep; 2019 Dec; 9(1):19639. PubMed ID: 31873112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Analysis of MIM-Based Log-Spiral Rectennas for Efficient Infrared Energy Harvesting.
    Yahyaoui A; Elsharabasy A; Yousaf J; Rmili H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI
    Belkadi A; Weerakkody A; Moddel G
    Nat Commun; 2021 May; 12(1):2925. PubMed ID: 34006880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Graphene Asymmetric Devices for Harvesting Electromagnetic Energy.
    Dragoman M; Dinescu A; Aldrigo M; Dragoman D
    Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers.
    Auton G; But DB; Zhang J; Hill E; Coquillat D; Consejo C; Nouvel P; Knap W; Varani L; Teppe F; Torres J; Song A
    Nano Lett; 2017 Nov; 17(11):7015-7020. PubMed ID: 29016145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Insulator Metal Diode: A Potential Candidate for Energy Harvesting Applications.
    Bhatt K; Kumar S; Tripathi CC
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3780-3784. PubMed ID: 31748076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene.
    Zak A; Andersson MA; Bauer M; Matukas J; Lisauskas A; Roskos HG; Stake J
    Nano Lett; 2014 Oct; 14(10):5834-8. PubMed ID: 25203787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Voltage-Tuned Terahertz Absorber Based on MoS
    Samy O; Belmoubarik M; Otsuji T; El Moutaouakil A
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time.
    Asgari M; Riccardi E; Balci O; De Fazio D; Shinde SM; Zhang J; Mignuzzi S; Koppens FHL; Ferrari AC; Viti L; Vitiello MS
    ACS Nano; 2021 Nov; 15(11):17966-17976. PubMed ID: 34706194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-of-the-Art Room Temperature Operable Zero-Bias Schottky Diode-Based Terahertz Detector Up to 5.56 THz.
    Yadav R; Ludwig F; Faridi FR; Klopf JM; Roskos HG; Preu S; Penirschke A
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacturing of quantum-tunneling MIM nanodiodes via rapid atmospheric CVD in terahertz band.
    Ozyigit D; Ullah F; Gulsaran A; Bastug Azer B; Shahin A; Musselman K; Bajcsy M; Yavuz M
    Sci Rep; 2023 Nov; 13(1):20733. PubMed ID: 38007559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Modelling of Gallium Nitride Based Lateral Schottky Barrier Diodes with Anode Recesses for mmWave and THz Applications.
    Alathbah M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.
    Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM
    ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.