These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34443849)

  • 1. Tungsten Based Spectrally Selective Absorbers with Anisotropic Rough Surface Texture.
    Pirouzfam N; Sendur K
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-perfect spectrally-selective metasurface solar absorber based on tungsten octagonal prism array.
    Xu M; Guo L; Zhang P; Qiu Y; Li Q; Wang J
    RSC Adv; 2022 Jun; 12(26):16823-16834. PubMed ID: 35754914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics.
    Cao L; Sendur K
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices.
    Jalil SA; Lai B; ElKabbash M; Zhang J; Garcell EM; Singh S; Guo C
    Light Sci Appl; 2020; 9():14. PubMed ID: 32047623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A straightforward spectral emissivity estimating method based on constructing random rough surfaces.
    Zhang Z; Chen M; Zhang L; Li H; Huang H; Zhang Z; Yu P; Niu Y; Gao S; Wang C; Jiang J
    Light Sci Appl; 2023 Nov; 12(1):266. PubMed ID: 37935681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.
    Tagliabue G; Eghlidi H; Poulikakos D
    Sci Rep; 2014 Nov; 4():7181. PubMed ID: 25418040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging.
    Li J; Bao L; Jiang S; Guo Q; Xu D; Xiong B; Zhang G; Yi F
    Opt Express; 2019 Mar; 27(6):8375-8386. PubMed ID: 31052656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable spectrally selective mid-infrared meta-absorbers for advanced radiative thermal engineering.
    Liu X; Chang Q; Yan M; Wang X; Zhang H; Zhou H; Fan T
    Phys Chem Chem Phys; 2020 Jul; 22(25):13965-13974. PubMed ID: 32609110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable wavelength selectivity of photonic metamaterials-based thermal devices.
    Tian Y; Ghanekar A; Liu X; Sheng J; Zheng Y
    J Photonics Energy; 2019 Jul; 9(3):. PubMed ID: 34084268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance.
    Liao Q; Zhang P; Yao H; Cheng H; Li C; Qu L
    Adv Sci (Weinh); 2020 Apr; 7(8):1903125. PubMed ID: 32328420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the optoelectronic properties of CoSb
    Taranova A; Akbar K; Yusupov K; You S; Polewczyk V; Mauri S; Balliana E; Rosen J; Moras P; Gradone A; Morandi V; Moretti E; Vomiero A
    Nat Commun; 2023 Nov; 14(1):7280. PubMed ID: 37949914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared.
    Lee D; Go M; Kim M; Jang J; Choi C; Kim JK; Rho J
    Microsyst Nanoeng; 2021; 7():14. PubMed ID: 34567729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale, Bandwidth-Adjustable, Visible Absorbers by Evaporation and Annealing Process.
    Long X; Yue W; Su Y; Chen W; Li L
    Nanoscale Res Lett; 2019 Feb; 14(1):48. PubMed ID: 30756198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.
    Li Z; Stan L; Czaplewski DA; Yang X; Gao J
    Opt Express; 2018 Mar; 26(5):5616-5631. PubMed ID: 29529764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.