These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34443870)

  • 21. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.
    Pellarin M; Ramade J; Rye JM; Bonnet C; Broyer M; Lebeault MA; Lermé J; Marguet S; Navarro JR; Cottancin E
    ACS Nano; 2016 Dec; 10(12):11266-11279. PubMed ID: 28024347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate.
    Spinelli P; van Lare C; Verhagen E; Polman A
    Opt Express; 2011 May; 19 Suppl 3():A303-11. PubMed ID: 21643371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory.
    Yang L; Wang J; Yang LZ; Hu ZD; Wu X; Zheng G
    Sci Rep; 2018 Feb; 8(1):2560. PubMed ID: 29416096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excitation of ultraviolet range Dirac-type plasmon resonance with an ultra-high Q-factor in the topological insulator Bi
    Wan M; He J; Ji P; Zhang X; Tian M; Zhou F; Liang E
    Opt Express; 2021 Mar; 29(6):9252-9260. PubMed ID: 33820357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring Fano lineshapes using plasmonic nanobars for highly sensitive sensing and directional emission.
    Li G; Hu H; Wu L
    Phys Chem Chem Phys; 2018 Dec; 21(1):252-259. PubMed ID: 30519701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial.
    Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-tunable Fano resonance in metal-dielectric multilayer structures.
    Hayashi S; Nesterenko DV; Rahmouni A; Ishitobi H; Inouye Y; Kawata S; Sekkat Z
    Sci Rep; 2016 Sep; 6():33144. PubMed ID: 27623741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fano resonances in symmetric plasmonic split-ring/ring dimer nanostructures.
    Wang J; Yang L; Wang F; Liu C; Xu C; Liu Q; Liu W; Li X; Sun T; Chu PK
    Appl Opt; 2019 Oct; 58(29):8069-8074. PubMed ID: 31674362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Optical Properties of Ag-Al Nanosphere Heterodimer].
    Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Au@Ag Core-Shell Nanorods Support Plasmonic Fano Resonances.
    Peña-Rodríguez O; Díaz-Núñez P; González-Rubio G; Manzaneda-González V; Rivera A; Perlado JM; Junquera E; Guerrero-Martínez A
    Sci Rep; 2020 Apr; 10(1):5921. PubMed ID: 32246058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-Function Meta-Grating Based on Tunable Fano Resonance for Reflective Filter and Sensor Applications.
    Liu F; Jia H; Chen Y; Luo X; Huang M; Wang M; Zhang X
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators.
    Peña-Rodríguez O; Pal U
    Nanoscale; 2011 Sep; 3(9):3609-12. PubMed ID: 21811742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells.
    Chen J; Shen Q; Chen Z; Wang Q; Tang C; Wang Z
    J Chem Phys; 2012 Jun; 136(21):214703. PubMed ID: 22697562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas-Utilization of Optimal Spectral Detuning of Fano Resonances.
    Mesch M; Weiss T; Schäferling M; Hentschel M; Hegde RS; Giessen H
    ACS Sens; 2018 May; 3(5):960-966. PubMed ID: 29708330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement.
    Sekkat Z; Hayashi S; Nesterenko DV; Rahmouni A; Refki S; Ishitobi H; Inouye Y; Kawata S
    Opt Express; 2016 Sep; 24(18):20080-8. PubMed ID: 27607617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.