These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34443887)
1. Approaching Disordered Quantum Dot Systems by Complex Networks with Spatial and Physical-Based Constraints. Cuadra L; Nieto-Borge JC Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443887 [TBL] [Abstract][Full Text] [Related]
2. Modeling Quantum Dot Systems as Random Geometric Graphs with Probability Amplitude-Based Weighted Links. Cuadra L; Nieto-Borge JC Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540687 [TBL] [Abstract][Full Text] [Related]
3. Carrier Transport in Colloidal Quantum Dot Intermediate Band Solar Cell Materials Using Network Science. Cuadra L; Salcedo-Sanz S; Nieto-Borge JC Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835214 [TBL] [Abstract][Full Text] [Related]
4. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706 [TBL] [Abstract][Full Text] [Related]
5. Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell. Park MH; Kim HS; Park SJ; Song JD; Kim SH; Lee YJ; Choi WJ; Park JH J Nanosci Nanotechnol; 2014 Apr; 14(4):2955-9. PubMed ID: 24734716 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
7. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells. Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021 [TBL] [Abstract][Full Text] [Related]
8. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System. Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958 [TBL] [Abstract][Full Text] [Related]
9. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
10. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
11. Charging of quantum dots by sulfide redox electrolytes reduces electron injection efficiency in quantum dot sensitized solar cells. Zhu H; Song N; Lian T J Am Chem Soc; 2013 Aug; 135(31):11461-4. PubMed ID: 23865741 [TBL] [Abstract][Full Text] [Related]
12. Effect of Mn doping on the electron injection in CdSe/TiO Du N; Cui Y; Zhang L; Yang M Phys Chem Chem Phys; 2021 Jan; 23(1):647-656. PubMed ID: 33332495 [TBL] [Abstract][Full Text] [Related]
13. Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells. Jin H; Choi S; Velu R; Kim S; Lee HJ Langmuir; 2012 Mar; 28(12):5417-26. PubMed ID: 22380945 [TBL] [Abstract][Full Text] [Related]
14. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot. Chen J; Lei W; Deng WQ Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215 [TBL] [Abstract][Full Text] [Related]
15. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes. Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932 [TBL] [Abstract][Full Text] [Related]
16. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
17. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of Mn Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776 [TBL] [Abstract][Full Text] [Related]
19. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Moon H; Lee C; Lee W; Kim J; Chae H Adv Mater; 2019 Aug; 31(34):e1804294. PubMed ID: 30650209 [TBL] [Abstract][Full Text] [Related]
20. Balanced Charge Carrier Transport Mediated by Quantum Dot Film Post-organization for Light-Emitting Diode Applications. Cho Y; Lim J; Li M; Pak S; Wang ZK; Yang YG; Abate A; Li Z; Snaith HJ; Hou B; Cha S ACS Appl Mater Interfaces; 2021 Jun; 13(22):26170-26179. PubMed ID: 34039003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]