These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34443940)

  • 1. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations.
    Tripathi PK; Chiu YC; Bhowmick S; Lo YC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic deformation and strengthening mechanism of FCC/HCP nano-laminated dual-phase CoCrFeMnNi high entropy alloy.
    Huang C; Yao Y; Peng X; Chen S
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34555821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys.
    Li Z; Tasan CC; Springer H; Gault B; Raabe D
    Sci Rep; 2017 Jan; 7():40704. PubMed ID: 28079175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.
    Tao W; Cao P; Park HS
    ACS Nano; 2018 May; 12(5):4984-4992. PubMed ID: 29708727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical inhomogeneity-induced profuse nanotwinning and phase transformation in AuCu nanowires.
    Yang C; Zhang B; Fu L; Wang Z; Teng J; Shao R; Wu Z; Chang X; Ding J; Wang L; Han X
    Nat Commun; 2023 Sep; 14(1):5705. PubMed ID: 37709777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy.
    Song H; Kim DG; Kim DW; Jo MC; Jo YH; Kim W; Kim HS; Lee BJ; Lee S
    Sci Rep; 2019 Apr; 9(1):6163. PubMed ID: 30992512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy.
    Ding H; Du Z; Zhang H; Liu Y; Zhao S; Yang Y; Wang C; Lei S; Geng R; Wang C
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced surface bombardment resistance of the CoNiCrFeMn high entropy alloy under extreme irradiation flux.
    Li Y; Li R; Peng Q
    Nanotechnology; 2020 Jan; 31(2):025703. PubMed ID: 31550702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction.
    Frank M; Nene SS; Chen Y; Gwalani B; Kautz EJ; Devaraj A; An K; Mishra RS
    Sci Rep; 2020 Dec; 10(1):22263. PubMed ID: 33335268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying.
    Wang T; Shukla S; Gwalani B; Sinha S; Thapliyal S; Frank M; Mishra RS
    Sci Rep; 2021 Jan; 11(1):1579. PubMed ID: 33452417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures.
    Gludovatz B; Hohenwarter A; Thurston KV; Bei H; Wu Z; George EP; Ritchie RO
    Nat Commun; 2016 Feb; 7():10602. PubMed ID: 26830651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotwinning and tensile behavior in cold-welded high-entropy-alloy nanowires.
    Cui Y; Toku Y; Ju Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33853044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy.
    Nene SS; Liu K; Frank M; Mishra RS; Brennan RE; Cho KC; Li Z; Raabe D
    Sci Rep; 2017 Nov; 7(1):16167. PubMed ID: 29170444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy.
    Yang Y; Chen T; Tan L; Poplawsky JD; An K; Wang Y; Samolyuk GD; Littrell K; Lupini AR; Borisevich A; George EP
    Nature; 2021 Jul; 595(7866):245-249. PubMed ID: 34234333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consecutive crystallographic reorientations and superplasticity in body-centered cubic niobium nanowires.
    Wang Q; Wang J; Li J; Zhang Z; Mao SX
    Sci Adv; 2018 Jul; 4(7):eaas8850. PubMed ID: 29984304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure Refinement of a Transformation-Induced Plasticity High-Entropy Alloy.
    Yi H; Wei D; Xie R; Zhang Y; Kato H
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Volume Fraction-Dependent Strengthening in a Nano-Laminated Dual-Phase High-Entropy Alloy.
    Huang C; Yao Y; Chen S
    ACS Omega; 2022 Aug; 7(34):29675-29683. PubMed ID: 36061647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient cell-structured high-entropy alloy with exceptional strength and ductility.
    Pan Q; Zhang L; Feng R; Lu Q; An K; Chuang AC; Poplawsky JD; Liaw PK; Lu L
    Science; 2021 Nov; 374(6570):984-989. PubMed ID: 34554824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of dislocation, mean free path, and migration barriers using high entropy alloy: insights from the atomistic study of irradiation damage of CoNiCrFeMn.
    Li Y; Li R; Peng Q; Ogata S
    Nanotechnology; 2020 Jun; 31(42):425701. PubMed ID: 32541101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.