BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34444909)

  • 1. The Metabolism of Glucosinolates by Gut Microbiota.
    Sikorska-Zimny K; Beneduce L
    Nutrients; 2021 Aug; 13(8):. PubMed ID: 34444909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates.
    Tian S; Liu X; Lei P; Zhang X; Shan Y
    J Sci Food Agric; 2018 Mar; 98(4):1255-1260. PubMed ID: 28869285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glucosinolates and their bioactive derivatives in
    Sikorska-Zimny K; Beneduce L
    Crit Rev Food Sci Nutr; 2021; 61(15):2544-2571. PubMed ID: 32584172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucosinolates: bioavailability and importance to health.
    Johnson IT
    Int J Vitam Nutr Res; 2002 Jan; 72(1):26-31. PubMed ID: 11887749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    Proc Nutr Soc; 2007 Feb; 66(1):69-81. PubMed ID: 17343774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects.
    Prieto MA; López CJ; Simal-Gandara J
    Adv Food Nutr Res; 2019; 90():305-350. PubMed ID: 31445598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context.
    Wieczorek MN; Walczak M; Skrzypczak-Zielińska M; Jeleń HH
    Crit Rev Food Sci Nutr; 2018; 58(18):3130-3140. PubMed ID: 28718657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations.
    Rungapamestry V; Duncan AJ; Fuller Z; Ratcliffe B
    J Agric Food Chem; 2006 Oct; 54(20):7628-34. PubMed ID: 17002432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myrosinase Compatible Simultaneous Determination of Glucosinolates and Allyl Isothiocyanate by Capillary Electrophoresis Micellar Electrokinetic Chromatography (CE-MEKC).
    Gonda S; Kiss-Szikszai A; Szűcs Z; Nguyen NM; Vasas G
    Phytochem Anal; 2016 May; 27(3-4):191-8. PubMed ID: 27313156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms.
    Shakour ZT; Shehab NG; Gomaa AS; Wessjohann LA; Farag MA
    Biotechnol Adv; 2022; 54():107784. PubMed ID: 34102260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gut Glucosinolate Metabolism and Isothiocyanate Production.
    Narbad A; Rossiter JT
    Mol Nutr Food Res; 2018 Sep; 62(18):e1700991. PubMed ID: 29806736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food as Pharma? The Case of Glucosinolates.
    Capuano E; Dekker M; Verkerk R; Oliviero T
    Curr Pharm Des; 2017; 23(19):2697-2721. PubMed ID: 28117016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A metabolomics approach to identify factors influencing glucosinolate thermal degradation rates in Brassica vegetables.
    Hennig K; de Vos RC; Maliepaard C; Dekker M; Verkerk R; Bonnema G
    Food Chem; 2014 Jul; 155():287-97. PubMed ID: 24594187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats.
    Rouzaud G; Rabot S; Ratcliffe B; Duncan AJ
    Br J Nutr; 2003 Aug; 90(2):395-404. PubMed ID: 12908900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
    Winde I; Wittstock U
    Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of glucosinolates in pickling cruciferous vegetables.
    Suzuki C; Ohnishi-Kameyama M; Sasaki K; Murata T; Yoshida M
    J Agric Food Chem; 2006 Dec; 54(25):9430-6. PubMed ID: 17147429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review.
    Nugrahedi PY; Verkerk R; Widianarko B; Dekker M
    Crit Rev Food Sci Nutr; 2015; 55(6):823-38. PubMed ID: 24915330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new source of bacterial myrosinase isolated from endophytic Bacillus sp. NGB-B10, and its relevance in biological control activity.
    Youseif SH; Abdel-Fatah HMK; Khalil MS
    World J Microbiol Biotechnol; 2022 Sep; 38(11):215. PubMed ID: 36056962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach.
    Pardini A; Tamasi G; De Rocco F; Bonechi C; Consumi M; Leone G; Magnani A; Rossi C
    Food Chem; 2021 Sep; 355():129634. PubMed ID: 33799240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of processing conditions on glucosinolates in cruciferous vegetables.
    Verkerk R; van der Gaag MS; Dekker M; Jongen WM
    Cancer Lett; 1997 Mar; 114(1-2):193-4. PubMed ID: 9103290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.