BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 34445083)

  • 1. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome.
    Ottesen EW; Luo D; Singh NN; Singh RN
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nusinersen in the Treatment of Spinal Muscular Atrophy.
    Goodkey K; Aslesh T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():69-76. PubMed ID: 30171535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.
    Singh NN; Howell MD; Androphy EJ; Singh RN
    Gene Ther; 2017 Sep; 24(9):520-526. PubMed ID: 28485722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells.
    Pagliarini V; Guerra M; Di Rosa V; Compagnucci C; Sette C
    J Neurochem; 2020 Apr; 153(2):264-275. PubMed ID: 31811660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
    Singh NN; Lee BM; Singh RN
    Ann N Y Acad Sci; 2015 Apr; 1341():176-87. PubMed ID: 25727246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
    Singh NN; Lee BM; DiDonato CJ; Singh RN
    Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy.
    Osman EY; Yen PF; Lorson CL
    Mol Ther; 2012 Jan; 20(1):119-26. PubMed ID: 22031236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy.
    Son HW; Yokota T
    Methods Mol Biol; 2018; 1828():57-68. PubMed ID: 30171534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Concentration or Combined Treatment of Antisense Oligonucleotides for Spinal Muscular Atrophy Perturbed
    Wijaya YOS; Niba ETE; Nishio H; Okamoto K; Awano H; Saito T; Takeshima Y; Shinohara M
    Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense oligonucleotide mediated therapy of spinal muscular atrophy.
    Sivanesan S; Howell MD; Didonato CJ; Singh RN
    Transl Neurosci; 2013 Mar; 4(1):. PubMed ID: 24265944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA in spinal muscular atrophy: therapeutic implications of targeting.
    Singh RN; Seo J; Singh NN
    Expert Opin Ther Targets; 2020 Aug; 24(8):731-743. PubMed ID: 32538213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy Δ7 mouse model phenotype.
    Nizzardo M; Simone C; Salani S; Ruepp MD; Rizzo F; Ruggieri M; Zanetta C; Brajkovic S; Moulton HM; Müehlemann O; Bresolin N; Comi GP; Corti S
    Clin Ther; 2014 Mar; 36(3):340-56.e5. PubMed ID: 24636820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.
    Hua Y; Vickers TA; Okunola HL; Bennett CF; Krainer AR
    Am J Hum Genet; 2008 Apr; 82(4):834-48. PubMed ID: 18371932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-mRNA Splicing Modulation by Antisense Oligonucleotides.
    Singh NN; Luo D; Singh RN
    Methods Mol Biol; 2018; 1828():415-437. PubMed ID: 30171557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy.
    Singh NN; Shishimorova M; Cao LC; Gangwani L; Singh RN
    RNA Biol; 2009; 6(3):341-50. PubMed ID: 19430205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
    Singh RN; Singh NN
    Adv Neurobiol; 2018; 20():31-61. PubMed ID: 29916015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy.
    Paton DM
    Drugs Today (Barc); 2017 Jun; 53(6):327-337. PubMed ID: 28799578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving concepts on human SMN pre-mRNA splicing.
    Singh RN
    RNA Biol; 2007; 4(1):7-10. PubMed ID: 17592254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy.
    Ottesen EW
    Transl Neurosci; 2017 Jan; 8():1-6. PubMed ID: 28400976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.