These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34445259)

  • 1. Graph Theoretical Methods and Workflows for Searching and Annotation of RNA Tertiary Base Motifs and Substructures.
    Emrizal R; Hamdani HY; Firdaus-Raih M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules.
    Hamdani HY; Appasamy SD; Willett P; Artymiuk PJ; Firdaus-Raih M
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W35-41. PubMed ID: 22661578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GrAfSS: a webserver for substructure similarity searching and comparisons in the structures of proteins and RNA.
    Ghani NSA; Emrizal R; Moffit SM; Hamdani HY; Ramlan EI; Firdaus-Raih M
    Nucleic Acids Res; 2022 Jul; 50(W1):W375-W383. PubMed ID: 35639505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures.
    Firdaus-Raih M; Hamdani HY; Nadzirin N; Ramlan EI; Willett P; Artymiuk PJ
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W382-8. PubMed ID: 24831543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. R3D-BLAST2: an improved search tool for similar RNA 3D substructures.
    Yen CY; Lin JC; Chen KT; Lu CL
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):574. PubMed ID: 29297283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAMotifScanX: a graph alignment approach for RNA structural motif identification.
    Zhong C; Zhang S
    RNA; 2015 Mar; 21(3):333-46. PubMed ID: 25595715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CompAnnotate: a comparative approach to annotate base-pairing interactions in RNA 3D structures.
    Islam S; Ge P; Zhang S
    Nucleic Acids Res; 2017 Aug; 45(14):e136. PubMed ID: 28641399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure.
    Reinharz V; Major F; Waldispühl J
    Bioinformatics; 2012 Jun; 28(12):i207-14. PubMed ID: 22689763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAG-3D: a search tool for RNA 3D substructures.
    Zahran M; Sevim Bayrak C; Elmetwaly S; Schlick T
    Nucleic Acids Res; 2015 Oct; 43(19):9474-88. PubMed ID: 26304547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of nucleic acid three-dimensional structures.
    Gendron P; Lemieux S; Major F
    J Mol Biol; 2001 May; 308(5):919-36. PubMed ID: 11352582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InterRNA: a database of base interactions in RNA structures.
    Appasamy SD; Hamdani HY; Ramlan EI; Firdaus-Raih M
    Nucleic Acids Res; 2016 Jan; 44(D1):D266-71. PubMed ID: 26553798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification and Identification of Non-canonical Base Pairs and Structural Motifs.
    Sarrazin-Gendron R; Waldispühl J; Reinharz V
    Methods Mol Biol; 2024; 2726():143-168. PubMed ID: 38780731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families.
    Reinharz V; Soulé A; Westhof E; Waldispühl J; Denise A
    Nucleic Acids Res; 2018 May; 46(8):3841-3851. PubMed ID: 29608773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DotAligner: identification and clustering of RNA structure motifs.
    Smith MA; Seemann SE; Quek XC; Mattick JS
    Genome Biol; 2017 Dec; 18(1):244. PubMed ID: 29284541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNApdbee 2.0: multifunctional tool for RNA structure annotation.
    Zok T; Antczak M; Zurkowski M; Popenda M; Blazewicz J; Adamiak RW; Szachniuk M
    Nucleic Acids Res; 2018 Jul; 46(W1):W30-W35. PubMed ID: 29718468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design.
    Gan HH; Pasquali S; Schlick T
    Nucleic Acids Res; 2003 Jun; 31(11):2926-43. PubMed ID: 12771219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.
    Petrov AI; Zirbel CL; Leontis NB
    RNA; 2013 Oct; 19(10):1327-40. PubMed ID: 23970545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.
    Parlea LG; Sweeney BA; Hosseini-Asanjan M; Zirbel CL; Leontis NB
    Methods; 2016 Jul; 103():99-119. PubMed ID: 27125735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel base triples in RNA structures revealed by graph theoretical searching methods.
    Firdaus-Raih M; Harrison AM; Willett P; Artymiuk PJ
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S2. PubMed ID: 22373013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.