These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34445259)

  • 21. Vernal: a tool for mining fuzzy network motifs in RNA.
    Oliver C; Mallet V; Philippopoulos P; Hamilton WL; WaldispĆ¼hl J
    Bioinformatics; 2022 Jan; 38(4):970-976. PubMed ID: 34791045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment.
    Zhong C; Tang H; Zhang S
    Nucleic Acids Res; 2010 Oct; 38(18):e176. PubMed ID: 20696653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA CoSSMos: Characterization of Secondary Structure Motifs--a searchable database of secondary structure motifs in RNA three-dimensional structures.
    Vanegas PL; Hudson GA; Davis AR; Kelly SC; Kirkpatrick CC; Znosko BM
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D439-44. PubMed ID: 22127861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RR3DD: an RNA global structure-based RNA three-dimensional structural classification database.
    Hong X; Zheng J; Xie J; Tong X; Liu X; Song Q; Liu S; Liu S
    RNA Biol; 2021 Nov; 18(sup2):738-746. PubMed ID: 34663179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IncMD: incremental trie-based structural motif discovery algorithm.
    Badr G; Al-Turaiki I; Turcotte M; Mathkour H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450027. PubMed ID: 25362841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery.
    Wadley LM; Pyle AM
    Nucleic Acids Res; 2004; 32(22):6650-9. PubMed ID: 15608296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tools for the automatic identification and classification of RNA base pairs.
    Yang H; Jossinet F; Leontis N; Chen L; Westbrook J; Berman H; Westhof E
    Nucleic Acids Res; 2003 Jul; 31(13):3450-60. PubMed ID: 12824344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA CoSSMos 2.0: an improved searchable database of secondary structure motifs in RNA three-dimensional structures.
    Richardson KE; Kirkpatrick CC; Znosko BM
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 31950189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA Bricks--a database of RNA 3D motifs and their interactions.
    Chojnowski G; Walen T; Bujnicki JM
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D123-31. PubMed ID: 24220091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural characterization of naturally occurring RNA single mismatches.
    Davis AR; Kirkpatrick CC; Znosko BM
    Nucleic Acids Res; 2011 Feb; 39(3):1081-94. PubMed ID: 20876693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA-As-Graphs Motif Atlas-Dual Graph Library of RNA Modules and Viral Frameshifting-Element Applications.
    Zhu Q; Petingi L; Schlick T
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15.
    Pei S; Slinger BL; Meyer MM
    BMC Bioinformatics; 2017 Jun; 18(1):298. PubMed ID: 28587636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNAfitme: a webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures.
    Antczak M; Zok T; Osowiecki M; Popenda M; Adamiak RW; Szachniuk M
    BMC Bioinformatics; 2018 Aug; 19(1):304. PubMed ID: 30134831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Annotation of tertiary interactions in RNA structures reveals variations and correlations.
    Xin Y; Laing C; Leontis NB; Schlick T
    RNA; 2008 Dec; 14(12):2465-77. PubMed ID: 18957492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.
    Kim N; Zahran M; Schlick T
    Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of RNA structural elements using evolutionary computation.
    Fogel GB; Porto VW; Weekes DG; Fogel DB; Griffey RH; McNeil JA; Lesnik E; Ecker DJ; Sampath R
    Nucleic Acids Res; 2002 Dec; 30(23):5310-7. PubMed ID: 12466557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library.
    Jain S; Zhu Q; Paz ASP; Schlick T
    Biochim Biophys Acta Gen Subj; 2020 Jun; 1864(6):129534. PubMed ID: 31954797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.