These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34445782)
1. Combined Transcriptomic Analysis and RNA Interference Reveal the Effects of Methoxyfenozide on Ecdysone Signaling Pathway of Zhang Z; Ma Y; Ma X; Hu H; Wang D; Song X; Ren X; Ma Y Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445782 [No Abstract] [Full Text] [Related]
2. Knockdown of CYP9A9 increases the susceptibility to lufenuron, methoxyfenozide and a mixture of both in Spodoptera exigua. Zhang Z; Wang D; Shan Y; Chen J; Hu H; Song X; Ma X; Ren X; Ma Y Insect Mol Biol; 2023 Jun; 32(3):263-276. PubMed ID: 36582185 [TBL] [Abstract][Full Text] [Related]
3. Monitoring of beet armyworm resistance to spinosad and methoxyfenozide in Mexico. Osorio A; Martínez AM; Schneider MI; Díaz O; Corrales JL; Avilés MC; Smagghe G; Pineda S Pest Manag Sci; 2008 Oct; 64(10):1001-7. PubMed ID: 18418831 [TBL] [Abstract][Full Text] [Related]
4. Ecdysone signaling and transcript signature in Drosophila cells resistant against methoxyfenozide. Mosallanejad H; Badisco L; Swevers L; Soin T; Knapen D; Vanden Broeck J; Smagghe G J Insect Physiol; 2010 Dec; 56(12):1973-85. PubMed ID: 20816975 [TBL] [Abstract][Full Text] [Related]
5. Ecdysteroid signaling in ecdysteroid-resistant cell lines from the polyphagous noctuid pest Spodoptera exigua. Swevers L; Soin T; Mosallanejad H; Iatrou K; Smagghe G Insect Biochem Mol Biol; 2008 Sep; 38(9):825-33. PubMed ID: 18675909 [TBL] [Abstract][Full Text] [Related]
6. Selection for resistance to methoxyfenozide and 20-hydroxyecdysone in cells of the beet armyworm, Spodoptera exigua. Mosallanejad H; Soin T; Smagghe G Arch Insect Biochem Physiol; 2008 Jan; 67(1):36-49. PubMed ID: 18044724 [TBL] [Abstract][Full Text] [Related]
7. Effects of larval exposure to sublethal concentrations of the ecdysteroid agonists RH-5849 and tebufenozide (RH-5992) on male reproductive physiology in Spodoptera litura. Seth RK; Kaur JJ; Rao DK; Reynolds SE J Insect Physiol; 2004 Jun; 50(6):505-17. PubMed ID: 15183280 [TBL] [Abstract][Full Text] [Related]
8. Effects of larval exposure to sublethal concentrations of methoxyfenozide in Spodoptera frugiperda (J.E. Smith). Pineda S; Zarate N; Diaz O; Martínez AM; Schneider MI; Figueroa JI; Smagghe G Commun Agric Appl Biol Sci; 2009; 74(2):425-8. PubMed ID: 20222601 [TBL] [Abstract][Full Text] [Related]
9. Lethal and sublethal effects of methoxyfenozide on the development, survival and reproduction of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Zarate N; Díaz O; Martínez AM; Figueroa JI; Schneider MI; Smagghe G; Viñuela E; Budia F; Pineda S Neotrop Entomol; 2011; 40(1):129-37. PubMed ID: 21437495 [TBL] [Abstract][Full Text] [Related]
10. Biochemical mechanisms of methoxyfenozide resistance in the cotton leafworm Spodoptera littoralis. Mosallanejad H; Smagghe G Pest Manag Sci; 2009 Jul; 65(7):732-6. PubMed ID: 19367570 [TBL] [Abstract][Full Text] [Related]
11. Resistance selection, mechanism and stability of Spodoptera litura (Lepidoptera: Noctuidae) to methoxyfenozide. Rehan A; Freed S Pestic Biochem Physiol; 2014 Mar; 110():7-12. PubMed ID: 24759045 [TBL] [Abstract][Full Text] [Related]
12. Knockdown of UDP-N-acetylglucosamine pyrophosphorylase and chitin synthase A increases the insecticidal efficiency of Lufenuron to Spodoptera exigua. Zhang Z; Song X; Hu H; Wang D; Chen J; Ma Y; Ma X; Ren X; Ma Y Pestic Biochem Physiol; 2022 Aug; 186():105178. PubMed ID: 35973767 [TBL] [Abstract][Full Text] [Related]
13. Identification of transcriptome and fluralaner responsive genes in the common cutworm Spodoptera litura Fabricius, based on RNA-seq. Jia ZQ; Liu D; Peng YC; Han ZJ; Zhao CQ; Tang T BMC Genomics; 2020 Feb; 21(1):120. PubMed ID: 32013879 [TBL] [Abstract][Full Text] [Related]
14. Dissecting the roles of FTZ-F1 in larval molting and pupation, and the sublethal effects of methoxyfenozide on Helicoverpa armigera. Zhang W; Ma L; Liu X; Peng Y; Liang G; Xiao H Pest Manag Sci; 2021 Mar; 77(3):1328-1338. PubMed ID: 33078511 [TBL] [Abstract][Full Text] [Related]
15. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. Vatanparast M; Kim Y PLoS One; 2017; 12(8):e0183054. PubMed ID: 28800614 [TBL] [Abstract][Full Text] [Related]
16. Molecular identification of four novel cytochrome P450 genes related to the development of resistance of Spodoptera exigua (Lepidoptera: Noctuidae) to chlorantraniliprole. Wang X; Chen Y; Gong C; Yao X; Jiang C; Yang Q Pest Manag Sci; 2018 Aug; 74(8):1938-1952. PubMed ID: 29488686 [TBL] [Abstract][Full Text] [Related]
17. Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae). Smagghe G; Pineda S; Carton B; Del Estal P; Budia F; Viñuela E Pest Manag Sci; 2003 Nov; 59(11):1203-9. PubMed ID: 14620046 [TBL] [Abstract][Full Text] [Related]
18. Lethal and sublethal effects of methoxyfenozide and spinosad on Spodoptera littoralis (Lepidoptera: Noctuidae). Pineda S; Schneider MI; Smagghe G; Martínez AM; Del Estal P; Viñuela E; Valle J; Budia F J Econ Entomol; 2007 Jun; 100(3):773-80. PubMed ID: 17598538 [TBL] [Abstract][Full Text] [Related]
19. Fitness Cost of Methoxyfenozide and the Effects of Its Sublethal Doses on Development, Reproduction, and Survival of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Rehan A; Freed S Neotrop Entomol; 2015 Oct; 44(5):513-20. PubMed ID: 26123055 [TBL] [Abstract][Full Text] [Related]
20. Gossypol-induced fitness gain and increased resistance to deltamethrin in beet armyworm, Spodoptera exigua (Hübner). Hafeez M; Liu S; Jan S; Ali B; Shahid M; Fernández-Grandon GM; Nawaz M; Ahmad A; Wang M Pest Manag Sci; 2019 Mar; 75(3):683-693. PubMed ID: 30094908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]