BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34445783)

  • 1. A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites.
    Acevedo-Del-Castillo A; Águila-Toledo E; Maldonado-Magnere S; Aguilar-Bolados H
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-composite materials for radiation protection.
    Nambiar S; Yeow JT
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5717-26. PubMed ID: 23009182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration.
    Mansouri E; Mesbahi A; Malekzadeh R; Mansouri A
    Radiat Environ Biophys; 2020 Nov; 59(4):583-600. PubMed ID: 32780196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radio-Absorbing Materials Based on Polymer Composites and Their Application to Solving the Problems of Electromagnetic Compatibility.
    Fionov A; Kraev I; Yurkov G; Solodilov V; Zhukov A; Surgay A; Kuznetsova I; Kolesov V
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites.
    Yang Y; Guptal MC; Dudley KL; Lawrence RW
    J Nanosci Nanotechnol; 2007 Feb; 7(2):549-54. PubMed ID: 17450793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of new transparent tungsten containing nanocomposites for radiation protection screens.
    Adliene D; Griskonis E; Vaiciunaite N; Plaipaite-Nalivaiko R
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):406-9. PubMed ID: 25821207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of calcium-iron-chromium nanocomposites for electromagnetic radiation shielding application.
    Raja RU; Vidya YS; Manjunatha HCS; Munirathnam R; Seenappa L; Sridhar KN; Rajashekara KM; Manjunatha S
    Radiat Prot Dosimetry; 2023 Dec; 199(20):2428-2437. PubMed ID: 38126861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding.
    Wang Z; Han X; Han X; Chen Z; Wang S; Pu J
    Carbohydr Polym; 2021 Feb; 254():117033. PubMed ID: 33357838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding.
    Zhao Y; Li C; Lang T; Gao J; Zhang H; Zhao Y; Guo Z; Miao Z
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma radiation shielding properties of some Bi-Sn-Zn alloys.
    Rani N; Vermani YK; Singh T
    J Radiol Prot; 2020 Mar; 40(1):296-310. PubMed ID: 31931482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Prepared Lead-Free Polymer Nanocomposites for X- and Gamma-ray Shielding in Healthcare Applications.
    Alsaab AH; Zeghib S
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution.
    Shen B; Zhai W; Tao M; Ling J; Zheng W
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11383-91. PubMed ID: 24134429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology.
    Malekzadeh R; Mehnati P; Sooteh MY; Mesbahi A
    Radiol Phys Technol; 2019 Sep; 12(3):325-334. PubMed ID: 31385155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review.
    Omana L; Chandran A; John RE; Wilson R; George KC; Unnikrishnan NV; Varghese SS; George G; Simon SM; Paul I
    ACS Omega; 2022 Aug; 7(30):25921-25947. PubMed ID: 35936479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric Nanocomposites for Environmental and Industrial Applications.
    Darwish MSA; Mostafa MH; Al-Harbi LM
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35162946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel 3-D printed radiation shielding materials embedded with bulk and nanoparticles of bismuth.
    Elsafi M; El-Nahal MA; Sayyed MI; Saleh IH; Abbas MI
    Sci Rep; 2022 Jul; 12(1):12467. PubMed ID: 35864112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and Ultrathin Waterproof Cellular Membranes Based on High-Conjunction Metal-Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding.
    Zeng Z; Jiang F; Yue Y; Han D; Lin L; Zhao S; Zhao YB; Pan Z; Li C; Nyström G; Wang J
    Adv Mater; 2020 May; 32(19):e1908496. PubMed ID: 32227390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn
    Anju ; Yadav RS; Pötschke P; Pionteck J; Krause B; Kuřitka I; Vilcakova J; Skoda D; Urbánek P; Machovsky M; Masař M; Urbánek M; Jurca M; Kalina L; Havlica J
    ACS Omega; 2021 Oct; 6(42):28098-28118. PubMed ID: 34723009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of cadmium chloride PVA polymer composite for γ-ray shielding.
    Krishnappa K; B Mohan S; M Ankanathappa S; Sannathammegowda K
    Radiat Prot Dosimetry; 2023 Dec; 199(20):2487-2490. PubMed ID: 38126851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.
    Izzati WA; Arief YZ; Adzis Z; Shafanizam M
    ScientificWorldJournal; 2014; 2014():735070. PubMed ID: 24558326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.