These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 34445911)
1. Adjusting for selection bias due to missing data in electronic health records-based research. Peskoe SB; Arterburn D; Coleman KJ; Herrinton LJ; Daniels MJ; Haneuse S Stat Methods Med Res; 2021 Oct; 30(10):2221-2238. PubMed ID: 34445911 [TBL] [Abstract][Full Text] [Related]
2. ROBUST INFERENCE WHEN COMBINING INVERSE-PROBABILITY WEIGHTING AND MULTIPLE IMPUTATION TO ADDRESS MISSING DATA WITH APPLICATION TO AN ELECTRONIC HEALTH RECORDS-BASED STUDY OF BARIATRIC SURGERY. Thaweethai T; Arterburn DE; Coleman KJ; Haneuse S Ann Appl Stat; 2021 Mar; 15(1):126-147. PubMed ID: 36245789 [TBL] [Abstract][Full Text] [Related]
3. Inverse-probability weighting and multiple imputation for evaluating selection bias in the estimation of childhood obesity prevalence using data from electronic health records. Sayon-Orea C; Moreno-Iribas C; Delfrade J; Sanchez-Echenique M; Amiano P; Ardanaz E; Gorricho J; Basterra G; Nuin M; Guevara M BMC Med Inform Decis Mak; 2020 Jan; 20(1):9. PubMed ID: 31959164 [TBL] [Abstract][Full Text] [Related]
5. HANDLING MISSING DATA BY DELETING COMPLETELY OBSERVED RECORDS. Paik MC; Wang C J Stat Plan Inference; 2009 Jul; 139(7):2341-2350. PubMed ID: 20160863 [TBL] [Abstract][Full Text] [Related]
6. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype. Guo F; Langworthy B; Ogino S; Wang M Stat Methods Med Res; 2024 Feb; 33(2):344-356. PubMed ID: 38262434 [TBL] [Abstract][Full Text] [Related]
7. Propensity score analysis with partially observed covariates: How should multiple imputation be used? Leyrat C; Seaman SR; White IR; Douglas I; Smeeth L; Kim J; Resche-Rigon M; Carpenter JR; Williamson EJ Stat Methods Med Res; 2019 Jan; 28(1):3-19. PubMed ID: 28573919 [TBL] [Abstract][Full Text] [Related]
8. Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification. Beesley LJ; Mukherjee B Biometrics; 2022 Mar; 78(1):214-226. PubMed ID: 33179768 [TBL] [Abstract][Full Text] [Related]
9. Missing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation. Moodie EE; Delaney JA; Lefebvre G; Platt RW Int J Biostat; 2008; 4(1):Article 13. PubMed ID: 22462119 [TBL] [Abstract][Full Text] [Related]
10. Performance of Multiple Imputation Using Modern Machine Learning Methods in Electronic Health Records Data. Getz K; Hubbard RA; Linn KA Epidemiology; 2023 Mar; 34(2):206-215. PubMed ID: 36722803 [TBL] [Abstract][Full Text] [Related]
11. Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification. Beesley LJ; Mukherjee B Stat Med; 2022 Dec; 41(28):5501-5516. PubMed ID: 36131394 [TBL] [Abstract][Full Text] [Related]
12. A General Framework for Considering Selection Bias in EHR-Based Studies: What Data Are Observed and Why? Haneuse S; Daniels M EGEMS (Wash DC); 2016; 4(1):1203. PubMed ID: 27668265 [TBL] [Abstract][Full Text] [Related]
13. Inverse Probability of Treatment Weighting and Confounder Missingness in Electronic Health Record-based Analyses: A Comparison of Approaches Using Plasmode Simulation. Vader DT; Mamtani R; Li Y; Griffith SD; Calip GS; Hubbard RA Epidemiology; 2023 Jul; 34(4):520-530. PubMed ID: 37155612 [TBL] [Abstract][Full Text] [Related]
14. Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression. Wang CY; Dai J Stat Med; 2019 Jul; 38(15):2783-2796. PubMed ID: 30908669 [TBL] [Abstract][Full Text] [Related]
15. Using instruments for selection to adjust for selection bias in Mendelian randomization. Gkatzionis A; Tchetgen Tchetgen EJ; Heron J; Northstone K; Tilling K Stat Med; 2024 Sep; 43(22):4250-4271. PubMed ID: 39039030 [TBL] [Abstract][Full Text] [Related]
16. Investigating Bias from Missing Data in an Electronic Health Records-Based Study of Weight Loss After Bariatric Surgery. Koffman L; Levis AW; Arterburn D; Coleman KJ; Herrinton LJ; Cooper J; Ewing J; Fischer H; Fraser JR; Johnson E; Taylor B; Theis MK; Liu L; Courcoulas A; Li R; Fisher DP; Amsden L; Haneuse S Obes Surg; 2021 May; 31(5):2125-2135. PubMed ID: 33462670 [TBL] [Abstract][Full Text] [Related]
17. Learning About Missing Data Mechanisms in Electronic Health Records-based Research: A Survey-based Approach. Haneuse S; Bogart A; Jazic I; Westbrook EO; Boudreau D; Theis MK; Simon GE; Arterburn D Epidemiology; 2016 Jan; 27(1):82-90. PubMed ID: 26484425 [TBL] [Abstract][Full Text] [Related]
18. Statistical methods for incomplete data: Some results on model misspecification. McIsaac M; Cook RJ Stat Methods Med Res; 2017 Feb; 26(1):248-267. PubMed ID: 25063681 [TBL] [Abstract][Full Text] [Related]
19. Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why. Leyrat C; Carpenter JR; Bailly S; Williamson EJ Am J Epidemiol; 2021 Apr; 190(4):663-672. PubMed ID: 33057574 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome. Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]