These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 34445986)

  • 1. Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning.
    Gupta R; Kleinjans J; Caiment F
    BMC Cancer; 2021 Aug; 21(1):962. PubMed ID: 34445986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma.
    Huang G; Wang C; Fu X
    Future Oncol; 2021 Nov; 17(33):4481-4495. PubMed ID: 34374301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods.
    Li L; Ching WK; Liu ZP
    Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circulating miRNA's biomarkers for early detection of hepatocellular carcinoma in Egyptian patients based on machine learning algorithms.
    Sayed GI; Solyman M; El Gedawy G; Moemen YS; Aboul-Ella H; Hassanien AE
    Sci Rep; 2024 Feb; 14(1):4989. PubMed ID: 38424116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust biomarker discovery for hepatocellular carcinoma from high-throughput data by multiple feature selection methods.
    Zhang Z; Liu ZP
    BMC Med Genomics; 2021 Aug; 14(Suppl 1):112. PubMed ID: 34433487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network.
    Deng Z; Ji Y; Han B; Tan Z; Ren Y; Gao J; Chen N; Ma C; Zhang Y; Yao Y; Lu H; Huang H; Xu M; Chen L; Zheng L; Gu J; Xiong D; Zhao J; Gu J; Chen Z; Wang K
    Genome Med; 2023 Nov; 15(1):93. PubMed ID: 37936230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnosis of hepatocellular carcinoma based on salivary protein glycopatterns and machine learning algorithms.
    Tang Z; Zhang F; Wang Y; Zhang C; Li X; Yin M; Shu J; Yu H; Liu X; Guo Y; Li Z
    Clin Chem Lab Med; 2022 Nov; 60(12):1963-1973. PubMed ID: 36113983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics.
    Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J
    Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WGCNA combined with machine learning to find potential biomarkers of liver cancer.
    Lv JH; Hou AJ; Zhang SH; Dong JJ; Kuang HX; Yang L; Jiang H
    Medicine (Baltimore); 2023 Dec; 102(50):e36536. PubMed ID: 38115320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding key genes (UBE2T, KIF4A, CDCA3, and CDCA5) co-expressed in hepatitis, cirrhosis and hepatocellular carcinoma based on multiple bioinformatics techniques.
    Zhang Y; Yu W; Zhou S; Xiao J; Zhang X; Yang H; Zhang J
    BMC Gastroenterol; 2024 Jun; 24(1):205. PubMed ID: 38890649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-transcriptomics analysis of microvascular invasion-related malignant cells and development of a machine learning-based prognostic model in hepatocellular carcinoma.
    Huang H; Wu F; Yu Y; Xu B; Chen D; Huo Y; Li S
    Front Immunol; 2024; 15():1436131. PubMed ID: 39176099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the Pathogenic Biomarkers for Hepatocellular Carcinoma Based on RNA-seq Analyses.
    Jiang W; Zhang L; Guo Q; Wang H; Ma M; Sun J; Chen C
    Pathol Oncol Res; 2019 Jul; 25(3):1207-1213. PubMed ID: 30680535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning algorithms based on proteomic data mining accurately predicting the recurrence of hepatitis B-related hepatocellular carcinoma.
    Feng G; He N; Xia HH; Mi M; Wang K; Byrne CD; Targher G; Yuan HY; Zhang XL; Zheng MH; Ye F
    J Gastroenterol Hepatol; 2022 Nov; 37(11):2145-2153. PubMed ID: 35816347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of bulk RNA and single-cell sequencing unveils PANoptosis-related immunological ecology hallmarks and classification for clinical decision-making in hepatocellular carcinoma.
    Liu L; Zhou Z; Xie C; Hu L
    Sci Rep; 2024 Sep; 14(1):22517. PubMed ID: 39342037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Five machine learning-based radiomics models for preoperative prediction of histological grade in hepatocellular carcinoma.
    Wu C; Du X; Zhang Y; Zhu L; Chen J; Chen Y; Wei Y; Liu Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(16):15103-15112. PubMed ID: 37624395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Epigenetic Machine Learning Model to Define Risk of Progression for Hepatocellular Carcinoma Patients.
    Bedon L; Dal Bo M; Mossenta M; Busato D; Toffoli G; Polano M
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33499054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.
    Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM
    BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining featured biomarkers associated with vascular invasion in HCC by bioinformatics analysis with TCGA RNA sequencing data.
    Zhang R; Ye J; Huang H; Du X
    Biomed Pharmacother; 2019 Oct; 118():109274. PubMed ID: 31545220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.