These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34446445)

  • 41. Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors.
    Wang HF; Zhang S; Zhu AD; Yi XX; Yeon KH
    Opt Express; 2011 Dec; 19(25):25433-40. PubMed ID: 22273935
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots.
    Zeuner KD; Jöns KD; Schweickert L; Reuterskiöld Hedlund C; Nuñez Lobato C; Lettner T; Wang K; Gyger S; Schöll E; Steinhauer S; Hammar M; Zwiller V
    ACS Photonics; 2021 Aug; 8(8):2337-2344. PubMed ID: 34476289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Super sub-wavelength patterns in photon coincidence detection.
    Liu R; Zhang P; Zhou Y; Gao H; Li F
    Sci Rep; 2014 Feb; 4():4068. PubMed ID: 24531057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantum-inspired optical coherence tomography using classical light in a single-photon counting regime.
    Dąbrowska AM; Kolenderska SM; Szlachetka J; Słowik K; Kolenderski P
    Opt Lett; 2024 Jan; 49(2):363-366. PubMed ID: 38194569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase-controlled coherent photons for the quantum correlations in a delayed-choice quantum eraser scheme.
    Ham BS
    Sci Rep; 2024 Jan; 14(1):1752. PubMed ID: 38243015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-photon non-linear optics with a quantum dot in a waveguide.
    Javadi A; Söllner I; Arcari M; Hansen SL; Midolo L; Mahmoodian S; Kiršanskė G; Pregnolato T; Lee EH; Song JD; Stobbe S; Lodahl P
    Nat Commun; 2015 Oct; 6():8655. PubMed ID: 26492951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.
    Gonoskov IA; Tsatrafyllis N; Kominis IK; Tzallas P
    Sci Rep; 2016 Sep; 6():32821. PubMed ID: 27601191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics.
    Wei J; Olaya D; Karasik BS; Pereverzev SV; Sergeev AV; Gershenson ME
    Nat Nanotechnol; 2008 Aug; 3(8):496-500. PubMed ID: 18685638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toward Atomic-Resolution Quantum Measurements with Coherently Shaped Free Electrons.
    Ruimy R; Gorlach A; Mechel C; Rivera N; Kaminer I
    Phys Rev Lett; 2021 Jun; 126(23):233403. PubMed ID: 34170167
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time shaping of entangled photons by classical control and feedback.
    Lib O; Hasson G; Bromberg Y
    Sci Adv; 2020 Sep; 6(37):. PubMed ID: 32917683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantum-Coherent Light-Electron Interaction in a Scanning Electron Microscope.
    Shiloh R; Chlouba T; Hommelhoff P
    Phys Rev Lett; 2022 Jun; 128(23):235301. PubMed ID: 35749196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Observing the Quantum Wave Nature of Free Electrons through Spontaneous Emission.
    Remez R; Karnieli A; Trajtenberg-Mills S; Shapira N; Kaminer I; Lereah Y; Arie A
    Phys Rev Lett; 2019 Aug; 123(6):060401. PubMed ID: 31491157
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantum imaging of a polarisation sensitive phase pattern with hyper-entangled photons.
    Kaur M; Singh M
    Sci Rep; 2021 Dec; 11(1):23636. PubMed ID: 34880274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transverse recoil imprinted on free-electron radiation.
    Shi X; Wong LWW; Huang S; Wong LJ; Kaminer I
    Nat Commun; 2024 Sep; 15(1):7803. PubMed ID: 39242627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Breaking the diffraction limit using fluorescence quantum coherence.
    Li W; Wang Z
    Opt Express; 2022 Apr; 30(8):12684-12694. PubMed ID: 35472900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum Light-Enhanced Two-Photon Imaging of Breast Cancer Cells.
    Varnavski O; Gunthardt C; Rehman A; Luker GD; Goodson T
    J Phys Chem Lett; 2022 Mar; 13(12):2772-2781. PubMed ID: 35318850
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A bright triggered twin-photon source in the solid state.
    Heindel T; Thoma A; von Helversen M; Schmidt M; Schlehahn A; Gschrey M; Schnauber P; Schulze JH; Strittmatter A; Beyer J; Rodt S; Carmele A; Knorr A; Reitzenstein S
    Nat Commun; 2017 Apr; 8():14870. PubMed ID: 28367950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cavity-enhanced coherent light scattering from a quantum dot.
    Bennett AJ; Lee JP; Ellis DJ; Meany T; Murray E; Floether FF; Griffths JP; Farrer I; Ritchie DA; Shields AJ
    Sci Adv; 2016 Apr; 2(4):e1501256. PubMed ID: 27152337
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Majorana vortex photons a form of entangled photons propagation through brain tissue.
    Mamani S; Shi L; Nolan D; Alfano R
    J Biophotonics; 2019 Oct; 12(10):e201900036. PubMed ID: 31162813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrically driven photon antibunching from a single molecule at room temperature.
    Nothaft M; Höhla S; Jelezko F; Frühauf N; Pflaum J; Wrachtrup J
    Nat Commun; 2012 Jan; 3():628. PubMed ID: 22252552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.