These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66. Light emission by free electrons in photonic time-crystals. Dikopoltsev A; Sharabi Y; Lyubarov M; Lumer Y; Tsesses S; Lustig E; Kaminer I; Segev M Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35131857 [TBL] [Abstract][Full Text] [Related]
67. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion. Cho M J Chem Phys; 2018 May; 148(18):184111. PubMed ID: 29764138 [TBL] [Abstract][Full Text] [Related]
68. Quantum Interference between Fundamentally Different Processes Is Enabled by Shaped Input Wavefunctions. Lim J; Kumar S; Ang YS; Ang LK; Wong LJ Adv Sci (Weinh); 2023 Apr; 10(10):e2205750. PubMed ID: 36737853 [TBL] [Abstract][Full Text] [Related]
69. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach. Budich JC; Trauzettel B Nanotechnology; 2010 Jul; 21(27):274001. PubMed ID: 20571188 [TBL] [Abstract][Full Text] [Related]
70. Spatially resolved quantum nano-optics of single photons using an electron microscope. Tizei LH; Kociak M Phys Rev Lett; 2013 Apr; 110(15):153604. PubMed ID: 25167267 [TBL] [Abstract][Full Text] [Related]
71. Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream. Steindl P; Snijders H; Westra G; Hissink E; Iakovlev K; Polla S; Frey JA; Norman J; Gossard AC; Bowers JE; Bouwmeester D; Löffler W Phys Rev Lett; 2021 Apr; 126(14):143601. PubMed ID: 33891441 [TBL] [Abstract][Full Text] [Related]
72. Massively Parallel Coincidence Counting of High-Dimensional Entangled States. Reichert M; Defienne H; Fleischer JW Sci Rep; 2018 May; 8(1):7925. PubMed ID: 29785008 [TBL] [Abstract][Full Text] [Related]
73. Suppression of population transport and control of exciton distributions by entangled photons. Schlawin F; Dorfman KE; Fingerhut BP; Mukamel S Nat Commun; 2013; 4():1782. PubMed ID: 23653194 [TBL] [Abstract][Full Text] [Related]
74. Controlling photons in a box and exploring the quantum to classical boundary (Nobel Lecture). Haroche S Angew Chem Int Ed Engl; 2013 Sep; 52(39):10159-78. PubMed ID: 24038846 [TBL] [Abstract][Full Text] [Related]
75. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Hermelin S; Takada S; Yamamoto M; Tarucha S; Wieck AD; Saminadayar L; Bäuerle C; Meunier T Nature; 2011 Sep; 477(7365):435-8. PubMed ID: 21938064 [TBL] [Abstract][Full Text] [Related]
76. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes. Gabor NM Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453 [TBL] [Abstract][Full Text] [Related]
77. Proposed Scheme to Generate Bright Entangled Photon Pairs by Application of a Quadrupole Field to a Single Quantum Dot. Zeeshan M; Sherlekar N; Ahmadi A; Williams RL; Reimer ME Phys Rev Lett; 2019 Jun; 122(22):227401. PubMed ID: 31283293 [TBL] [Abstract][Full Text] [Related]
78. Quantum imaging with N-photon states in position space. Brainis E Opt Express; 2011 Nov; 19(24):24228-40. PubMed ID: 22109449 [TBL] [Abstract][Full Text] [Related]
79. Testing the photon-number statistics of a quantum key distribution light source. Dynes JF; Lucamarini M; Patel KA; Sharpe AW; Ward MB; Yuan ZL; Shields AJ Opt Express; 2018 Sep; 26(18):22733-22749. PubMed ID: 30184929 [TBL] [Abstract][Full Text] [Related]
80. Direct generation of photon triplets using cascaded photon-pair sources. Hübel H; Hamel DR; Fedrizzi A; Ramelow S; Resch KJ; Jennewein T Nature; 2010 Jul; 466(7306):601-3. PubMed ID: 20671705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]