BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34446801)

  • 41. Dexamethasone inhibits pancreatic tumor growth in preclinical models: Involvement of activating glucocorticoid receptor.
    Yao Y; Yao QY; Xue JS; Tian XY; An QM; Cui LX; Xu C; Su H; Yang L; Feng YY; Hao CY; Zhou TY
    Toxicol Appl Pharmacol; 2020 Aug; 401():115118. PubMed ID: 32619553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proteasome inhibitors exert cytotoxicity and increase chemosensitivity via transcriptional repression of Notch1 in T-cell acute lymphoblastic leukemia.
    Koyama D; Kikuchi J; Hiraoka N; Wada T; Kurosawa H; Chiba S; Furukawa Y
    Leukemia; 2014 Jun; 28(6):1216-26. PubMed ID: 24301524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dexamethasone enhances the antitumor efficacy of Gemcitabine by glucocorticoid receptor signaling.
    Gong JH; Zheng YB; Zhang MR; Wang YX; Yang SQ; Wang RH; Miao QF; Liu XJ; Zhen YS
    Cancer Biol Ther; 2020 Apr; 21(4):332-343. PubMed ID: 31906826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrically controlled drug release from nanostructured polypyrrole coated on titanium.
    Sirivisoot S; Pareta R; Webster TJ
    Nanotechnology; 2011 Feb; 22(8):085101. PubMed ID: 21242621
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytotoxicity considerations and electrically tunable release of dexamethasone from polypyrrole for the treatment of back-of-the-eye conditions.
    Ramtin A; Seyfoddin A; Coutinho FP; Waterhouse GI; Rupenthal ID; Svirskis D
    Drug Deliv Transl Res; 2016 Dec; 6(6):793-799. PubMed ID: 26887593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porous antioxidant polymer microparticles as therapeutic systems for the airway inflammatory diseases.
    Jeong D; Kang C; Jung E; Yoo D; Wu D; Lee D
    J Control Release; 2016 Jul; 233():72-80. PubMed ID: 27151077
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrospun poly(L-lactic acid) nanofibres loaded with dexamethasone to induce osteogenic differentiation of human mesenchymal stem cells.
    Nguyen LT; Liao S; Chan CK; Ramakrishna S
    J Biomater Sci Polym Ed; 2012; 23(14):1771-91. PubMed ID: 21943592
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells.
    Kullmann MK; Grubbauer C; Goetsch K; Jäkel H; Podmirseg SR; Trockenbacher A; Ploner C; Cato AC; Weiss C; Kofler R; Hengst L
    Cell Cycle; 2013 Aug; 12(16):2625-35. PubMed ID: 23907123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmacokinetic/Pharmacodynamic Modeling of the Anti-Cancer Effect of Dexamethasone in Pancreatic Cancer Xenografts and Anticipation of Human Efficacious Doses.
    Yao Y; Yao Q; Fu Y; Tian X; An Q; Yang L; Su H; Lu W; Hao C; Zhou T
    J Pharm Sci; 2020 Feb; 109(2):1169-1177. PubMed ID: 31655033
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus.
    Bruni R; Possenti P; Bordignon C; Li M; Ordanini S; Messa P; Rastaldi MP; Cellesi F
    J Control Release; 2017 Jun; 255():94-107. PubMed ID: 28395969
    [TBL] [Abstract][Full Text] [Related]  

  • 51. mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells.
    Silic-Benussi M; Sharova E; Ciccarese F; Cavallari I; Raimondi V; Urso L; Corradin A; Kotler H; Scattolin G; Buldini B; Francescato S; Basso G; Minuzzo SA; Indraccolo S; D'Agostino DM; Ciminale V
    Redox Biol; 2022 May; 51():102268. PubMed ID: 35248829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-dependent pharmacokinetics of dexamethasone and its efficacy in human breast cancer xenograft mice: a semi-mechanism-based pharmacokinetic/pharmacodynamic model.
    Li J; Chen R; Yao QY; Liu SJ; Tian XY; Hao CY; Lu W; Zhou TY
    Acta Pharmacol Sin; 2018 Mar; 39(3):472-481. PubMed ID: 29119968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cation instructed steroidal prodrug supramolecular hydrogel.
    Zhou Y; Lei L; Zhang Z; Zhang R; Song Q; Li X
    J Colloid Interface Sci; 2018 Oct; 528():10-17. PubMed ID: 29803956
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug Delivery System Based on Near-Infrared Light-Responsive Molybdenum Disulfide Nanosheets Controls the High-Efficiency Release of Dexamethasone To Inhibit Inflammation and Treat Osteoarthritis.
    Zhao Y; Wei C; Chen X; Liu J; Yu Q; Liu Y; Liu J
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11587-11601. PubMed ID: 30844228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia.
    Bhadri VA; Cowley MJ; Kaplan W; Trahair TN; Lock RB
    BMC Genomics; 2011 Nov; 12():565. PubMed ID: 22093874
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High payload dual therapeutic-imaging nanocarriers for triggered tumor delivery.
    Kim JK; Yuan H; Nie J; Yang YT; Leggas M; Potter PM; Rinehart J; Jay M; Lu X
    Small; 2012 Sep; 8(18):2895-903. PubMed ID: 22777758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting FoxM1 transcription factor in T-cell acute lymphoblastic leukemia cell line.
    Tüfekçi Ö; Yandım MK; Ören H; İrken G; Baran Y
    Leuk Res; 2015 Mar; 39(3):342-7. PubMed ID: 25557384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Establishment of reproducible xenotransplantation model of T cell acute lymphoblastic leukemia in NOD/SCID mice.
    Wang D; Wang N; Zhang Y; Ma S; Geng Z; Zhou P; Zhou J; Huang L
    J Huazhong Univ Sci Technolog Med Sci; 2012 Aug; 32(4):511-516. PubMed ID: 22886962
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-throughput screening of human leukemia xenografts to identify dexamethasone sensitizers.
    Toscan CE; Failes T; Arndt GM; Lock RB
    J Biomol Screen; 2014 Dec; 19(10):1391-401. PubMed ID: 25104793
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclin-dependent kinase 9 as a potential specific molecular target in NK-cell leukemia/lymphoma.
    Kinoshita S; Ishida T; Ito A; Narita T; Masaki A; Suzuki S; Yoshida T; Ri M; Kusumoto S; Komatsu H; Shimizu N; Inagaki H; Kuroda T; Scholz A; Ueda R; Sanda T; Iida S
    Haematologica; 2018 Dec; 103(12):2059-2068. PubMed ID: 30076184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.