These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34447302)

  • 1. A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons.
    Wei B; Ding Z; Yi C; Guo H; Wang Z; Zhu J; Jiang F
    Front Neurorobot; 2021; 15():704226. PubMed ID: 34447302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Real-Time Stability Control Method Through sEMG Interface for Lower Extremity Rehabilitation Exoskeletons.
    Wang C; Guo Z; Duan S; He B; Yuan Y; Wu X
    Front Neurosci; 2021; 15():645374. PubMed ID: 33927589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Recognition and Assistance Parameter Prediction Determination Based on Kinematic Information Measured by Inertial Measurement Units.
    Xiang Q; Wang J; Liu Y; Guo S; Liu L
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction.
    Guo Z; Zheng H; Wu H; Zhang J; Zhou G; Long J
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37059084
    [No Abstract]   [Full Text] [Related]  

  • 8. Online Adaptive Prediction of Human Motion Intention Based on sEMG.
    Ding Z; Yang C; Wang Z; Yin X; Jiang F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Load Style Variation on Gait Recognition Based on sEMG Images Using a Convolutional Neural Network.
    Zhang X; Hu Y; Luo R; Li C; Tang Z
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Electromyography and Electroencephalogram-Based Gait Phase Recognition and Correlations Between Cortical and Locomotor Muscle in the Seven Gait Phases.
    Wei P; Zhang J; Wang B; Hong J
    Front Neurosci; 2021; 15():607905. PubMed ID: 34093106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors.
    Liu DX; Wu X; Du W; Wang C; Xu T
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of motion detection with FMG and sEMG methods for assistive applications.
    Islam MRU; Waris A; Kamavuako EN; Bai S
    J Rehabil Assist Technol Eng; 2020; 7():2055668320938588. PubMed ID: 33240523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Gait Recovery after a Combination of Conventional Therapy and Overground Robot-Assisted Gait Training Is Not Associated with Significant Changes in Muscle Activation Pattern: An EMG Preliminary Study on Subjects Subacute Post Stroke.
    Infarinato F; Romano P; Goffredo M; Ottaviani M; Galafate D; Gison A; Petruccelli S; Pournajaf S; Franceschini M
    Brain Sci; 2021 Apr; 11(4):. PubMed ID: 33915808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Soft Exoskeleton Glove for Hand Bilateral Training via Surface EMG.
    Chen Y; Yang Z; Wen Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination.
    Zhu F; Kern M; Fowkes E; Afzal T; Contreras-Vidal JL; Francisco GE; Chang SH
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 33752175
    [No Abstract]   [Full Text] [Related]  

  • 17. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.
    Knaepen K; Beyl P; Duerinck S; Hagman F; Lefeber D; Meeusen R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1128-37. PubMed ID: 24846650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trunk muscle activity patterns and motion patterns of patients with motor complete spinal cord injury at T8 and T10 walking with different un-powered exoskeletons.
    Guan X; Kuai S; Ji L; Wang R; Ji R
    J Spinal Cord Med; 2017 Jul; 40(4):463-470. PubMed ID: 28514926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.